试题分析:(Ⅰ)由题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902675726.png)
①,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903377437.png)
时,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903393780.png)
②,
②-①,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903409833.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903424235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
各项为正,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903455597.png)
,
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903471539.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
成公差2的等差数列.又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903487357.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903518649.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903533370.png)
.故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902909568.png)
. 4分
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903565765.png)
,要使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902769325.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902785349.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902800395.png)
成等差数列,须
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903627639.png)
,
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240109036431009.png)
,整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903658643.png)
,因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902847337.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902831267.png)
为正整数,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902831267.png)
只能取2,3,5.故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902925719.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902941716.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902956715.png)
. 10分
(Ⅲ)作如下构造:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902972762.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902972867.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902987763.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903003518.png)
,它们依次为数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
中第
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903034631.png)
项,第
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903050628.png)
项,第
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903065665.png)
,显然它们成等比数列,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903299614.png)
,所以它们能组成三角形.
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903003518.png)
的任意性,知这样的三角形有无穷多个.
下面用反证法证明其中任意两个
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903331596.png)
和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903346627.png)
不相似:若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903331596.png)
∽
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904017620.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904033474.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240109040481409.png)
,整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904064970.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904079451.png)
,这与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904033474.png)
矛盾,因此,任意两个三角形不相似.故原命题正确. 16分
点评:基础题,首先利用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904111485.png)
的关系,确定得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
的通项公式,进一步研究
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902738678.png)
中项的关系。为证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902878376.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902878388.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902894395.png)
能构成三角形,在明确表达式的基础上,应用了反证法。