精英家教网 > 高中数学 > 题目详情
12.已知二次函数f(x)=x2-(a-1)x+5在区间($\frac{1}{2}$,1)上是增函数,求:
(1)实数a的取值范围;
(2)f(2)的取值范围.

分析 (1)求出函数的对称轴,列出不等式求解即可.
(2)f(2)的表达式,结合(1)a的范围,求解f(2)d的取值范围即可.

解答 解:(1)∵对称轴$x=\frac{a-1}{2}$,二次函数f(x)=x2-(a-1)x+5在区间($\frac{1}{2}$,1)上是增函数,
联系图象,满足题意,
只需$\frac{a-1}{2}≤\frac{1}{2}$,
∴a≤2;        …(6分)
(2)∵f(2)=22-2(a-1)+5=-2a+11,
又∵a≤2,
∴-2a≥-4,
∴f(2)=-2a+11≥-4+11=7,
∴f(2)∈[7,+∞).…(12分)

点评 本题考查二次函数的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.$\vec a$,$\vec b$是两个向量,$|{\vec a}|=1$,$|{\vec b}|=2$,且$({\vec a+\vec b})⊥\vec a$,则$\vec a$,$\vec b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在长方体ABCD-A1B1C1D1中,面BMD1N与棱CC1,AA1分别交于点M,N,且M,N均为中点.
(1)求证:AC∥面BMD1N;
(2)若$AD=CD=2,D{D_1}=2\sqrt{2},O$为AC的中点.BD1上是否存在动点F,使得OF⊥面BMD1N?若存在,求出点F的位置,并加以证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$γ:\frac{x^2}{a^2}+{y^2}=1$(常数a>1)的左顶点为R,点A(a,1),B(-a,1),O为坐标原点.(1)设a=2,Q是椭圆γ上任意一点,S(6,0),求$\overrightarrow{QS}•\overrightarrow{QR}$的最小值;
(2)若P是椭圆γ上任意一点,$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$,求m2+n2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2ax+2.
(1)当a=-1时,求函数f(x)在[-4,4]上的最大值和最小值;
(2)求函数y=f(x)在[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.计算$\underset{lim}{△x→0}$$\frac{sin(\frac{π}{6}+△x)-\frac{1}{2}}{△x}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列命题中,正确命题的序号是②③④
①已知cos($\frac{π}{2}$+φ)=-$\frac{{\sqrt{3}}}{2}$,且角φ的终边有一点(2,a),则a=±2$\sqrt{3}$
②函数f(x)的定义域是R,f(-1)=2,对?x∈R,f'(x)>2,则f(x)>2x+4的解集为(-1,+∞);
③根据表格中的数据,可以判定方程ex-x-6=0一个根所在的区间为(2,3);
x-10123
ex0.3712.727.3920.09
x+656789
④已知函数f(x)是定义在R上的偶函数,当x≥0时f(x)=ex-ax,若函数f(x)在R上有且只有4个零点,则a的取值范围是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U={x|x≤9,x∈N*},两个集合A与B同时满足:A∩B={2,4},A∩(∁UB)={1,3,5}且∁U(A∪B)={7,8}.求集合A、B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=lg(1-$\sqrt{x-2}}$)的定义域为(  )
A.(2,3)B.(2,3]C.[2,3)D.[2,3]

查看答案和解析>>

同步练习册答案