精英家教网 > 高中数学 > 题目详情
11.已知a,b,c分别为△ABC三个内角A,B,C的对边,(a+b)(sinA-sinB)=(c-b)sinC,∠A=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 已知等式利用正弦定理化简,整理得到关系式,再利用余弦定理表示出cosA,把得出关系式代入求出cosA的值,即可确定出角A的大小.

解答 解:已知等式(a+b)(sinA-sinB)=(c-b)sinC,
利用正弦定理化简得:(a+b)(a-b)=c(c-b),即b2+c2-a2=bc,
∴cosA=$\frac{1}{2}$,
∴A=$\frac{π}{3}$,
故选C.

点评 此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.我国南宋时期的《数学九章》中提出了秦九韶算法来计算多项式的值,在执行下列算法的程序框图时,若输入的n=4,x=2,则输出V的值为(  )
A.15B.31C.63D.127

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为(  )
A.3.119B.3.126C.3.132D.3.151

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足(3-4i)z=|4+3i|,则z的虚部为(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈[1,3],x2≤a”为真命题的一个充分不必要条件是(  )
A.a≤9B.a≥9C.a≤10D.a≥10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两圆x2+y2=10和(x-1)2+(y-a)2=20相交于A、B两个不同的点,且直线AB与直线3x-y+1=0垂直,则实数a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-1|.
(Ⅰ)解关于x的不等式f(x)+x2-1>0;
(Ⅱ)若g(x)=-|x+4|+m,f(x)<g(x)的解集非空,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求证:$\frac{1-2sinxcosx}{{{{cos}^2}x-{{sin}^2}x}}=\frac{1-tanx}{1+tanx}$
(2)已知tanθ+sinθ=a,tanθ-sinθ=b,求证:(a2-b22=16ab.

查看答案和解析>>

同步练习册答案