精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,已知正方体ABCD-A1B1C1D1的棱长为a,E,F分别是BC,A1D1的中点.
(1)求证:四边形B1EDF为菱形;
(2)求A1C与DE所成的角的余弦值.
分析:(1)要证四边形B1EDF为菱形,只要先证其是平行四边形,再说明邻边相等即可,根据正方体的性质易证;
(2)根据异面直线所成角的定义,把直线A1C平移和直线DE相交,找到异面直线A1C与DE所成的角,解三角形即可求得结果.
解答:精英家教网解:(1)证明:取AD中点H,连接BH,FH,
易证:FHBB1为矩形,
因此,FB1∥BH,且FB1=BH,.
又∵正方形ABCD中BH∥DE且BH=DE,
∴FB1∥DE,FB1=DE,
∴FB1ED为平行四边形.
又∵FD=DE=
a2+(
a
2
)2
=
5
2
a,
∴四边形B1EDF为菱形.
(2)连接AC交DE于点O,
AO
OC
=
DO
OE
=
AD
EC
=
2
1

过O点作OM∥A1C交AA1于点M,
则∠MOD或其补角为DE与A1C所成的角.
在△MOD中,OD=
2
3
DE=
2
3
×
5
2
a=
5
3
a,
MO=
2
3
A1C=
2
3
×
3
a=
2
3
3
a,
MD=
(
2
3
a)2+a2
=
13
3
a,
cos∠MOD=
15
15

∴A1C与DE所成的角的余弦值等于
15
15
点评:此题是个中档题.考查异面直线所成的角和棱柱的结构特征,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知正方体ABCD-A1B1C1D1的棱长为2,长为2的线段MN的一个端点M在棱DD1上运动,另一端点N在正方形ABCD内运动,则MN的中点的轨迹的面积为(  )
A、4π
B、2π
C、π
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知正方体ABCD-A′B′C′D′,求:
(1)BC′与CD′所成的角;
(2)AD与BC′所成的角.

查看答案和解析>>

科目:高中数学 来源:2015届辽宁省锦州市高一12月月考数学试卷(解析版) 题型:填空题

如图所示,已知正方体(图1)对角线长为a,沿对角面将其切割成两块,拼成图2所示的几何体,那么拼成后的几何体的全面积为              

 

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

如图所示,已知正方体ABCD- A1B1C1D1,棱长为a,在正方体内随机取一点P,求:
(1)点P到面ABCD的距离大于的概率P1
(2)点P到面ABCD及面A1B1C1D1的距离都大于的概率P2

查看答案和解析>>

同步练习册答案