精英家教网 > 高中数学 > 题目详情
5.求下列函数的定义域和值域:
(1)y=$\sqrt{1-{3}^{x}}$;
(2)y=2${\;}^{\frac{1}{x-4}}$;
(3)y=($\frac{2}{3}$)${\;}^{\sqrt{-|x|}}$.

分析 (1)解不等式1-3x≥0即可得出该函数的定义域,而由0≤1-3x≤1即可得出该函数的值域;
(2)定义域显然为{x|x≠4},根据$\frac{1}{x-4}≠0$及指数函数的值域即可得出该函数的值域;
(3)要使原函数有意义,显然x=0,从而便可写出该函数的定义域、值域.

解答 解:(1)解1-3x≥0得,x≤0;
∴该函数的定义域为(-∞,0];
∵3x>0;
∴1-3x<1,且1-3x≥0;
∴0≤y<1;
∴该函数的值域为:[0,1);
(2)定义域为{x|x≠4};
∵$\frac{1}{x-4}≠0$;
∴${2}^{\frac{1}{x-4}}>0$,且${2}^{\frac{1}{x-4}}≠1$;
∴该函数的值域为{y|y>0,且y≠1};
(3)要使原函数有意义,则x=0;
∴该函数的定义域为{0},值域为{1}.

点评 考查函数定义域、值域的概念及求法,以及指数函数的值域,指数函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤3}\end{array}\right.$,则z=1+2x-3y的最小值是(  )
A.-6B.-5C.-4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.化简:$\frac{1}{lo{g}_{3}x}+\frac{1}{lo{g}_{4}x}+\frac{1}{lo{g}_{5}x}$=(  )
A.$\frac{1}{lo{g}_{60}x}$B.$\frac{1}{lo{g}_{3}x•lo{g}_{4}x•lo{g}_{5}x}$
C.$\frac{1}{lo{g}_{x}60}$D.$\frac{12}{lo{g}_{3}x+lo{g}_{4}x+lo{g}_{5}x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{k}{x}$+2(k∈R),若f(lg2)=0,则f(lg$\frac{1}{2}$)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=-($\frac{1}{2}$)x的图象(  )
A.与函数y=($\frac{1}{2}$)x的图象关于y对称
B.与函数y=($\frac{1}{2}$)x的图象关于坐标原点对称
C.与函数y=($\frac{1}{2}$)-x的图象关于y轴对称
D.与函数y=($\frac{1}{2}$)-x的图象关于坐标原点对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=|x-1|和g(x)=x(4-x)的单调递增区间分别是(  )
A.(-∞,1]和(-∞,2]B.[1,+∞)和(-∞,2]C.(-∞,1]和[2,+∞)D.[1,+∞)和[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别是a,b,c,若B=$\frac{π}{3}$,且(sinA-sinB+sinC)(sinA+sinB-sinC)=$\frac{3}{7}$sinBsinC.
(Ⅰ)求cosC的值;
(Ⅱ)若a=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=lg$\frac{3x}{x-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>b>0,c<d<0,e<0,求证:$\frac{e}{(a-c)^{2}}$>$\frac{e}{(b-d)^{2}}$.

查看答案和解析>>

同步练习册答案