【题目】将函数f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)图象向左平移 个单位后,得到函数的图象关于点( ,0)对称,则函数g(x)=cos(x+φ)在[﹣ , ]上的最小值是( )
A.﹣
B.﹣
C.
D.
【答案】D
【解析】解:∵f(x)=sin(2x+φ)+ cos(2x+φ)=2sin(2x+φ+ ),
∴将函数f(x)图象向左平移 个单位后,得到函数解析式为:y=2sin[2(x+ )+φ+ ]=2cos(2x+φ+ ),
∵函数的图象关于点( ,0)对称,
∴对称中心在函数图象上,可得:2cos(2× +φ+ )=2cos(π+φ+ )=0,解得:π+φ+ =kπ+ ,k∈Z,解得:φ=kπ﹣ ,k∈Z,
∵0<φ<π,
∴解得:φ= ,
∴g(x)=cos(x+ ),
∵x∈[﹣ , ],x+ ∈[﹣ , ],
∴cos(x+ )∈[ ,1],则函数g(x)=cos(x+φ)在[﹣ , ]上的最小值是 .
故选:D.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)当时,求函数的单调递增区间;
(2)对于,为任意实数,关于的方程恰好有两个不等实根,求实数的值;
(3)在(2)的条件下,若不等式在恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(x0 , 0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足 .
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线l1与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(3)直线l2:x=ty+1与曲线C交于A、B两点,E(1,0),试问:当t变化时,是否存在一直线l2 , 使△ABE的面积为 ?若存在,求出直线l2的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值。
(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)
①
②
③
评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;
(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公比小于1的等比数列{an}的前n项和为Sn , a1= ,且13a2=3S3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log3(1﹣Sn+1),若 + +…+ = ,求n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 ﹣ =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )
A.
=1
B.
=1
C.
=1
D.
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某“双一流A类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:
(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;
(2)同一组数据用该区间的中点值作代表.
(i)求这100人月薪收入的样本平均数和样本方差;
(ii)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:
方案一:设,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收到600元,月薪落在区间右侧的每人收取800元.
方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?
参考数据:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com