精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|x|+|x-1|.
(Ⅰ)若f(x)≥|m-1|恒成立,求实数m的最大值M;
(Ⅱ)在(Ⅰ)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab.

分析 ( I)求出函数的解析式,然后求解函数的最小值,通过|m-1|≤1,求解m的范围,得到m的最大值M.
( II)法一:综合法,利用基本不等式证明即可.
法二:利用分析法,证明不等式成立的充分条件即可.

解答 解:( I)由已知可得$f(x)=\left\{\begin{array}{l}1-2x,{\;}x<0\\ 1,{\;}0≤x<1\\ 2x-1,{\;}x≥1\end{array}\right.$,
所以fmin(x)=1,…(3分)
所以只需|m-1|≤1,解得-1≤m-1≤1,∴0≤m≤2,
所以实数m的最大值M=2…(5分)
( II)法一:综合法
∴ab≤1∴$\sqrt{ab}≤1$,当且仅当a=b时取等号,①…(7分)
又∴$\frac{{\sqrt{ab}}}{a+b}≤\frac{1}{2}$∴$\frac{ab}{a+b}≤\frac{{\sqrt{ab}}}{2}$,当且仅当a=b时取等号,②…(9分)
由①②得,∴$\frac{ab}{a+b}≤\frac{1}{2}$,所以a+b≥2ab…(10分)
法二:分析法因为a>0,b>0,
所以要证a+b≥2ab,只需证(a+b)2≥4a2b2
即证a2+b2+2ab≥4a2b2
,所以只要证2+2ab≥4a2b2,…(7分)
即证2(ab)2-ab-1≤0,
即证(2ab+1)(ab-1)≤0,因为2ab+1>0,所以只需证ab≤1,
下证ab≤1,
因为2=a2+b2≥2ab,所以ab≤1成立,
所以a+b≥2ab…(10分)

点评 本题考查函数的最值的求法,基本不等式的应用,考查分析法与综合法的应用,考查逻辑推理能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=$\left\{\begin{array}{l}{lg(x+1),x≥0}\\{-{x}^{3},x<0}\end{array}\right.$,则使得f(x)≤1成立的x的取值范围是[-1,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}{log_2}(x+3),x≥0\\{x^2},x<0\end{array}\right.$则f(f(-1))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数:
(1)y=sin3x+3sinx;
(2)y=$\frac{1}{{e}^{x}+1}$-$\frac{1}{2}$;
(3)y=lg$\frac{1-x}{1+x}$;
(4)y=$\left\{\begin{array}{l}{-x+1,x≤0}\\{-x-1,x<0}\end{array}\right.$;
其中是奇函数且在(0,1)上是减函数的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合$M=\left\{{(x,y)\left|{y=\sqrt{1-{x^2}}}\right.}\right\}$,N={(x,y)|y=k(x-b)+1},若对任意的0≤k≤1都有M∩N≠∅,则实数b的取值范围是1-$\sqrt{2}$≤b≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={x|-1<x<3},集合B={x|$\frac{1}{3}<{3}^{x}<9$},则A∩B=(  )
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在${(2x+\frac{1}{4x})^5}$的展开式中,x3的系数值为20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某同学的父母想为他3年后读大学准备一笔资金,从2013年他考入马鞍山市某高中起,在每年的8月1日到银行存入a元钱,连存三年,若年利率r保持不变,且每年到期的本金和利息均自动转为新一年的本金(不计利息税),则到2016年8月1日可取回的本息和(元)为$\frac{a}{r}$•[(1+r)4-1-r].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|2x+1|-a2+$\frac{3a}{2}$,g(x)=|x|.
(I)当a=0时,解不等式f(x)-g(x)≥0;
(2)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案