精英家教网 > 高中数学 > 题目详情
的圆心是(  )
A.(-3,4) B.(-3,-4) C.(3 ,4) D.(3,-4)
D

试题分析:由于圆的一般方程为,所以配方法可知
,因此可知圆心坐标为(3,-4),故选D.
点评:根据已知的一般式方程配方的形式化为标准式,或者利用一般式方程中圆心坐标与系数的关系来求解得到结论,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如果圆x2+y2+Dx+Ey+F=0与x轴切于原点, 那么(  )          
A.D=0,E≠0, F≠0B.E=F=0,D≠0C.D="F=0," E≠0D.D=E=0,F≠0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点可作圆的两条切线,则实数的取值范围为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题13分)
已知平面直角坐标系内三点
(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径.
(2)求过点与条件 (1) 的圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知圆O:,圆C:,由两圆外一点引两圆切线PA、PB,切点分别为A、B,满足|PA|=|PB|.

(Ⅰ)求实数ab间满足的等量关系;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?若存在,求出圆P的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,直线,点在直线上,过点作圆的切线,切点为
(Ⅰ)若,求点坐标;
(Ⅱ)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;
(III)求证:经过三点的圆与圆的公共弦必过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆方程为
(1)求圆心轨迹的参数方程C;
(2)点是(1)中曲线C上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

自点A(3,5)作圆C:的切线,则切线的方程为( )
A.B.
C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆C的圆心在直线y=2x上,且与直线l:x+y+1=0相切于点P(-1,0).
(Ⅰ)求圆C的方程;
(Ⅱ)若A(1,0),点B是圆C上的动点,求线段AB中点M的轨迹方程,并说明表示什么曲线.

查看答案和解析>>

同步练习册答案