精英家教网 > 高中数学 > 题目详情
8.在△ABC中,已知$cosA=\frac{3}{5},cosB=\frac{5}{13}$,AC=3,则AB=$\frac{14}{5}$.

分析 由cosA与cosB的值,利用同角三角函数间的基本关系求出sinA和sinB的值,进而求出sinC的值,再由b的长,利用正弦定理求出c的长即可.

解答 解:∵$cosA=\frac{3}{5},cosB=\frac{5}{13}$,
∴sinA=$\frac{4}{5}$,sinB=$\frac{12}{13}$,
∴sinC=sin(A+B)=sinAcoB+cosAsinB=$\frac{4}{5}×\frac{5}{13}$+$\frac{3}{5}×\frac{12}{13}$=$\frac{56}{65}$,
又∵AC=3,
∴由正弦定理:$\frac{AC}{sinB}=\frac{AB}{sinC}$,可得:AB=$\frac{ACsinC}{sinB}$=$\frac{3×\frac{56}{65}}{\frac{12}{13}}$=$\frac{14}{5}$.
故答案为:$\frac{14}{5}$.

点评 此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握正弦、余弦定理是解本题的关键,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的平均分是89,则污损的数字是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,E,F分别为PA,BD的中点,PA=PD=AD=2.
(1)证明:EF∥平面PBC;
(2)若$PB=\sqrt{6}$,求二面角E-DF-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a=(3,2),\overrightarrow b=(x,1-y)$且$\overrightarrow a∥\overrightarrow b$,若x,y均为正数,则$\frac{3}{x}+\frac{2}{y}$的最小值是(  )
A.24B.8C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知约束条件$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-12≤0}\end{array}\right.$所表示的平面区域为D,若直线y=a(x+2)与区域D有公共点,则a的取值范围是(0,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.学校为了了解高一新生男生得到体能状况,从高一新生中抽取若干名男生进行铅球测试,把所得数据(精确到0.1米)进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(1)请将频率分布直方图补充完整;
(2)该校参加这次铅球测试的男生有多少人?
(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球测试的成绩的合格率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为$ρ=2\sqrt{3}sinθ$.
(1)写出曲线C的直角坐标方程;
(2)已知直线l与x轴的交点为P,与曲线C的交点为A,B,若AB的中点为D,求|PD|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:x2+2y2=8,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆经过原点,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合M={x|x2<x},N={x||x|<1},则(  )
A.M∩N=∅B.M∪N=MC.M∩N=MD.M∪N=R

查看答案和解析>>

同步练习册答案