精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于(  )
A.-1B.- 2C.2D.0
B
∵f(x)=ax4+bx2+c,
∴f′(x)=4ax3+2bx,
∴f′(1)=4a+2b=2,
∴f′(-1)=-4a-2b=-(4a+2b)=-2.故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(a为实数).
(1) 当a=5时,求函数处的切线方程;
(2) 求在区间)上的最小值;
(3) 若存在两不等实根,使方程成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x >0时,ex>x2-2ax+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的导数的最大值为3,则的图象的一条对称轴的方程是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量为常数, 是自然对数的底数),曲线在点处的切线与轴垂直,
(Ⅰ)求的值及的单调区间;
(Ⅱ)已知函数 (为正实数),若对于任意,总存在, 使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax--3ln x,其中a为常数.
(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;
(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;
(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f0(x)=cos xf1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n
N,则f2 011(x)等于  (  ).
A.sin xB.-sin x
C.cos xD.-cos x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=cos2,则f=________.

查看答案和解析>>

同步练习册答案