精英家教网 > 高中数学 > 题目详情
2.如图所示,在三棱锥S-ABC中,A′,B′,C′分别在棱SA,SB,SC上,且SA′:SA=1:2,SB′:SB=1:3,SC′:SC=1:4,求VS-ABC与VS-A′B′C′的比.

分析 求出C′到平面SA′B′的距离是C到平面SAB的距离的$\frac{1}{4}$,△SA′B′与△SAB的面积的比为1:6,即可求出VS-ABC与VS-A′B′C′的比.

解答 解:由题意,C′到平面SA′B′的距离是C到平面SAB的距离的$\frac{1}{4}$,
∵SA′:SA=1:2,SB′:SB=1:3,
∴△SA′B′与△SAB的面积的比为1:6,
∴VS-ABC与VS-A′B′C′的比为1:24.

点评 本题考查VS-ABC与VS-A′B′C′的比,考查体积的计算,正确运用体积公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某次大地震后,灾区急需大量帐篷,某服装长原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.
(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?
(2)工厂满负荷全面转产,是否可以如期完成任务?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}满足a1=1,an+1-an=2n,则a5=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,多面体ABCD-EGF中,底面ABCD为正方形,GD∥FC∥AE,AE⊥平面ABCD,其正视图,俯视图及相关数据如图.
(1)求证:BE∥平面CDGF;
(2)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,且AC⊥BC,P为$\widehat{{A}_{1}{B}_{1}}$上的动点.
(1)证明:PA1⊥平面PBB1
(2)设半圆柱和多面体ABB1A1C的体积分别为V1,V2,若V1:V2=3π:4,证明:AC=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,棱长为a的正方体ABCD-A1B1C1D1中,E、F分别为AB和BC的中点,M为棱B1B的中点.求证:
(1)EF⊥平面BB1D1D;
(2)平面EFB1⊥平面D1C1M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是周期为2的函数,当-1≤x≤1时,f(x)=$\left\{\begin{array}{l}{{x}^{2},-1≤x<0}\\{kx-1,0≤x≤1}\end{array}\right.$,则f($\frac{17}{4}$)=(  )
A.0B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解方程:|2x+3|-|x-1|=4x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}是公比为正整数的等比数列,若a2=2且a1,a3+$\frac{1}{2}$,a4成等差数列,
(Ⅰ)求数列{an}的通项an
(Ⅱ)定义:$\frac{n}{{{P_1}+{P_2}+…+{P_n}}}$为n个正数P1,P2,P3,…,Pn( n∈N*)的“均倒数”,
(ⅰ)若数列{bn}前n项的“均倒数”为$\frac{1}{{2{a_n}-1}}$(n∈N*),求数列{bn}的通项bn
(ⅱ)试比较$\frac{1}{b_1}$+$\frac{2}{b_2}$+…+$\frac{n}{b_n}$与2的大小,并说明理由.

查看答案和解析>>

同步练习册答案