精英家教网 > 高中数学 > 题目详情
17.已知点P(2,-1)、Q(a,4),并且|PQ|=$\sqrt{41}$,求a的值.

分析 根据题意,由P、Q的坐标以及|PQ|的值可得|PQ|=$\sqrt{(2-a)^{2}+(4+1)^{2}}$=$\sqrt{41}$,将其变形可得(a-2)2=16,解可得a的值,即可得答案.

解答 解:根据题意,点P(2,-1)、Q(a,4),
则|PQ|=$\sqrt{(2-a)^{2}+(4+1)^{2}}$=$\sqrt{41}$,
即(a-2)2=16,
解可得a=6或-2,
故a的值为6或-2.

点评 本题考查两点间距离公式的运用,解题的关键是正确利用两点间距离公式得到关于a的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图所示,已知四棱锥S-ABCD,底面ABCD为菱形,∠ABC=60°,SA⊥平面ABCD,E,F分别是CD,SD的中点,点H为SB上的动点,且EH与平面SAB所成最大角的正切值为$\frac{\sqrt{6}}{2}$.
(1)证明:AE⊥SB;
(2)求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从装有2只红球、2只白球和1只黑球的袋中逐一取球,每只球被抽取的可能性相同.
(1)若抽取后又放回,抽3次,分别求恰好2次为红球的概率及抽全三种颜色球的概率;
(2)若抽取后不放回,求抽完红球所需次数不少于4次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.广场舞是现代城市群众文化、娱乐发展的产物,其兼具文化性和社会性,是精神文明建设成果的一个重要指标和象征.2015年某高校社会实践小组对某小区跳广场舞的人的年龄进行了凋查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.
(1)估计在40名广场舞者中年龄分布在[40,70)的人数;
(2)求40名广场舞者年龄的中位数和平均数的估计值;
(3)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者年龄在[30,40)中的人数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2015年12月27日全国人大常委会会议通过了关于修教口与计划生育法的决定,“全面二孩”从2016年元旦起开给实施.A市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民45人、女性市民55人进行调查,得到以下2×2列联表.
  支持反对 合计 
男性 30 15 45
 女性 45 10 55
 合计 75 25 100
(1)根据以上数据,能否有90%的把握认为A市市民“支持全面二孩”与“性别”有关?
(2)现从参与调查的女性用户中按分层抽样的方法选出11名发放礼品,在所抽取的11人中分别求出“支持”和“不支持”态度的人数;
(3)将上述调查所得到的频率视为概率,现在从A市所有市民中,采取随机抽样的方法抽取3位市民进行长期跟踪调查,记被抽取的3位市民中持“支持”态度人数为X.
①求X的分布列;
②求X的数学期望E(X)和方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A,B是锐角△ABC的两个内角,二次函数f(x)=m2x2-2m2x+1,那么(  )
A.f(sinA)>f(cosA)B.f(cosA)>f(sinA)C.f(cosA)>f(sinB)D.f(sinA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{3x+1,x<0}\end{array}\right.$,则不等式f(x)<4f(x)+1的解集是{x|x>-$\frac{1}{9}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$=(cosωx,a),$\overrightarrow{n}$=(a,2+$\sqrt{3}$sinωx),ω>0,函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-5(a∈R,a≠0).
(1)当函数f(x)在x∈R上的最大值为3时,求a的值;
(2)在(1)的条件下,若函数y=f(x)-1在x∈(0,π]上至少有5个零点,求ω的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=acos(2x+$\frac{π}{3}$)+3,x∈R的最大值为4,求实数a的值.

查看答案和解析>>

同步练习册答案