精英家教网 > 高中数学 > 题目详情
如图:已知长方体的底面是边长为的正方形,高的中点,交于点.
(1)求证:平面
(2)求证:∥平面
(3)求三棱锥的体积.
(1)证明见解析;(2)证明见解析;(3).

试题分析:(1)要证平面,就要在平面内找两条与垂直的相交直线,由于是正方形,因此有,而在长方体中,侧棱与底面垂直,从而一定有,两条直线找到了;(2)要证平面,就应该在平面内找一条直线与平行,观察图形发现平面与平面相交于直线的交点),那么就是我们要找的平行线,这个根据中位线定理可得;(3)求三梭锥的体积,一般是求出其底的面积和高(顶点到底面的距离),利用体积公式得到结论,本题中点到底面的距离,即过到底面垂直的直线比较难以找到,考虑到三棱锥的每个面都是三角形,因此我们可以换底,即以其他面为底面,目的是高易求,由于长方体的底面是正方形,其中垂直关系较多,可证平面,即平面,因此以为底,就是高,体积可得.
试题解析:(1)底面是边长为正方形,
底面平面        3分
平面    5分
(2)连结的中点,的中点
,        7分
平面平面
∥平面        10分
(3)
同样计算可得为等腰三角形,        12分
等腰三角形的高为
         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,,平面平面是线段上一点,

(Ⅰ)证明:
(Ⅱ)设三棱锥与四棱锥的体积分别为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形中,°,平面,设的中点为

(1) 求证:平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.

(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,点F是PB的中点,点E在边BC上移动.

(1)若,求证:
(2)若二面角的大小为,则CE为何值时,三棱锥的体积为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱柱的底面边长为,高为2,则直三棱柱的外接球的表面积为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

棱长为1的正方体的8个顶点都在球的表面上,分别是棱的中点,点分别是线段(不包括端点)上的动点,且线段平行于平面,则
(1)直线被球截得的线段长为
(2)四面体的体积的最大值是

查看答案和解析>>

同步练习册答案