精英家教网 > 高中数学 > 题目详情
16.在等比{an}数列中,a2a6=16,a4+a8=8,则$\frac{{a}_{20}}{{a}_{10}}$=(  )
A.1B.-3C.1或-3D.-1或3

分析 由已知结合等比数列的性质求得a4、a8的值,进一步求出q2=1,再由等比数列的通项公式求得a10,a20,则答案可求.

解答 解:在等比{an}数列中,由a2a6=16,a4+a8=8,
得$\left\{\begin{array}{l}{{{a}_{4}}^{2}={a}_{2}{a}_{6}=16}\\{{a}_{4}+{a}_{8}=8}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{4}=4}\\{{a}_{8}=4}\end{array}\right.$,
∴等比数列的公比满足q2=1.
则${a}_{10}={a}_{4}{q}^{6}=4$,${a}_{20}={a}_{4}{q}^{16}=4$,
∴$\frac{{a}_{20}}{{a}_{10}}=\frac{4}{4}=1$.
故选:A.

点评 本题考查等比数列的通项公式,考查了等比数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在圆C1:x2+y2=4内任取一点P,P落在圆C2:(x-a)2+y2=1内的概率是$\frac{1}{4}$,则a的范围是(  )
A.-1≤a≤1B.-2≤a≤2C.0≤a≤1D.-1≤a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若存在a∈R,使关于x的不等式x|x-a|<m+1在(0,1]上恒成立,则实数m的取值范围为(  )
A.(2-2$\sqrt{2}$,2+2$\sqrt{2}$)B.(-1,+∞)C.(2-2$\sqrt{2}$,+∞)D.(-1,2+2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l经过点P(0,0),Q(-1,$\sqrt{3}$),则直线l的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有两件事和四个图象,两件事为:①我离开家不久,发现自己把作业本忘在家里了,于是返回家找到作业本再上学;②我出发后,心情轻松,缓缓前行,后来为了赶时间开始加速,四个图象如下:

与事件①,②对应的图象分别为(  )
A.a,bB.a,cC.d,bD.d,c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,sinA=$\frac{1}{2}$,sinB=$\frac{4}{5}$,a=2cm,则b=$\frac{16}{5}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.质点沿直线运动的路程和时间的关系是s=$\root{5}{t}$.则质点在t=4时的速度是(  )
A.$\frac{1}{2\root{5}{{2}^{3}}}$B.$\frac{1}{10\root{5}{{2}^{3}}}$C.$\frac{1}{\frac{2}{5}\root{5}{{2}^{3}}}$D.$\frac{1}{\frac{1}{10}\root{5}{{2}^{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.关于复数x、y的方程组$\left\{\begin{array}{l}{x+2yi=1-i}\\{xi-3y=2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-3-i}\\{y=-1+i}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知正项等比数列{an}满足a1+a2=3,a2a3a4=64.
(1)求数列{an}的通项公式;
(2)若bn=an(an+1),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案