精英家教网 > 高中数学 > 题目详情
4.已知直线l经过点P(0,0),Q(-1,$\sqrt{3}$),则直线l的倾斜角为(  )
A.30°B.60°C.120°D.150°

分析 利用直线的倾斜角与斜率的关系即可得出.

解答 解:设直线l的倾斜角为θ,θ∈[0°,180°).
∴tanθ=$\frac{\sqrt{3}-0}{-1-0}$=-$\sqrt{3}$,
∴θ=120°,
故选:C.

点评 本题考查了直线的倾斜角与斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知A(1,-2),B(2,1),C(3,2),D(2,3).
(1)求$\overrightarrow{AD}$+$\overrightarrow{BD}$-$\overrightarrow{BC}$;
(2)若$\overrightarrow{AC}$+λ$\overrightarrow{AB}$与$\overrightarrow{CD}$垂直,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,a3+a7=22,S4=24.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知45°<α<90°,函数f(x)=ax+b的图象如图,则函数g(x)=loga(x+b)的图象可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的内角A,B,C的对边分别为a,b,c,若$\sqrt{3}$acosC+($\sqrt{3}$c-2b)cosA=0,且cosA•cosC=$\frac{\sqrt{3}}{4}$,则△ABC是(  )
A.直角三角形B.等腰三角形
C.等边三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x-y+1=0的倾斜角的大小为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等比{an}数列中,a2a6=16,a4+a8=8,则$\frac{{a}_{20}}{{a}_{10}}$=(  )
A.1B.-3C.1或-3D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2cosx(cosx+$\sqrt{3}$sinx)-1.
(I)求f(x)的最小值;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,若f($\frac{C}{2}$)=2且ab=c2,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)满足$\underset{lim}{x→0}$$\frac{f(1)-f(1-x)}{x}$=-1,则f′(1)=-1.

查看答案和解析>>

同步练习册答案