精英家教网 > 高中数学 > 题目详情
19.已知△ABC的内角A,B,C的对边分别为a,b,c,若$\sqrt{3}$acosC+($\sqrt{3}$c-2b)cosA=0,且cosA•cosC=$\frac{\sqrt{3}}{4}$,则△ABC是(  )
A.直角三角形B.等腰三角形
C.等边三角形D.等腰三角形或直角三角形

分析 利用正弦定理化简已知等式可得$\sqrt{3}$sinAcosC+$\sqrt{3}$sinCcosA=2sinBcosA,由诱导公式及三角形内角和定理可得$\sqrt{3}$sinB=2sinBcosA,结合范围B∈(0,π),sinB>0,可求A,又cosA•cosC=$\frac{\sqrt{3}}{4}$,解得cosC=$\frac{1}{2}$,由范围C∈(0,π),可求C,从而求得B=$\frac{π}{2}$,即可得解.

解答 解:∵$\sqrt{3}$acosC+($\sqrt{3}$c-2b)cosA=0,
∴由正弦定理可得:$\sqrt{3}$sinAcosC+$\sqrt{3}$sinCcosA=2sinBcosA,
∴$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB=2sinBcosA,
∵B∈(0,π),sinB>0,
∴解得:cosA=$\frac{\sqrt{3}}{2}$,由A∈(0,π),可得:A=$\frac{π}{6}$,
又∵cosA•cosC=$\frac{\sqrt{3}}{4}$,解得:cosC=$\frac{1}{2}$,
∴由C∈(0,π),可得:C=$\frac{π}{3}$,
∴B=π-A-C=$\frac{π}{2}$.
故选:A.

点评 本题主要考查了正弦定理,三角形内角和定理,诱导公式,两角和的正弦函数公式,余弦函数的图象和性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.$\sqrt{{a}^{\frac{11}{2}}\sqrt{{a}^{-3}}}$-3${\;}^{-lo{g}_{3}2}$+log${\;}_{\sqrt{3}}$1=a2-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在区间[0,2π]上随机取一个数x,则事件“cosx≥$\frac{1}{2}$”发生的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若存在a∈R,使关于x的不等式x|x-a|<m+1在(0,1]上恒成立,则实数m的取值范围为(  )
A.(2-2$\sqrt{2}$,2+2$\sqrt{2}$)B.(-1,+∞)C.(2-2$\sqrt{2}$,+∞)D.(-1,2+2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设全集为R,集合A={x|1≤3x<9},B={x|log2x≥0}
(Ⅰ)求A∩B
(Ⅱ)若集合C={x|x+a>0},满足B∩C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l经过点P(0,0),Q(-1,$\sqrt{3}$),则直线l的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有两件事和四个图象,两件事为:①我离开家不久,发现自己把作业本忘在家里了,于是返回家找到作业本再上学;②我出发后,心情轻松,缓缓前行,后来为了赶时间开始加速,四个图象如下:

与事件①,②对应的图象分别为(  )
A.a,bB.a,cC.d,bD.d,c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.质点沿直线运动的路程和时间的关系是s=$\root{5}{t}$.则质点在t=4时的速度是(  )
A.$\frac{1}{2\root{5}{{2}^{3}}}$B.$\frac{1}{10\root{5}{{2}^{3}}}$C.$\frac{1}{\frac{2}{5}\root{5}{{2}^{3}}}$D.$\frac{1}{\frac{1}{10}\root{5}{{2}^{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.sin22°30′•cos22°30′的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案