精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,有一个以F1(0,-)和F2(0, )为焦点、离心率为的椭圆.设椭圆在第一象限的部分为曲线C,动点PC上,C在点P处的切线与xy轴的交点分别为AB,且向量=+.求:

(1)点M的轨迹方程;

(2)||的最小值.

解:(1)椭圆方程可写为=1,?

式中ab>0,且

a2=4,b2=1,所以曲线C的方程为x2+=1(x>0,y>0).?

y=2(0<x<1),

y′=-

P(x0,y0),因P在C上,有0<x0<1,y0=2,y′|x=x0=-,得切线AB的方程为y=-(x-x0)+y0.?

A(x,0)和B(0,y),由切线方程得x=,y=?

=+M的坐标为(x,y),由x0y0满足C的方程,得点M的轨迹方程为=1(x>1,y>2).?

(2)∵||2=x2+y2,

y2==4+,

∴||2=x2-1++5≥4+5=9且当x2-1=,即x=>1时,上式取等号.?

故||的最小值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案