已知椭圆中心在原点,焦点在y轴上,离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线
上的两个动点,且满足
,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断
是否为定值?若是,求出这个定值;若不是,说明理由.
(Ⅰ)
(Ⅱ)
为定值0.
(Ⅰ)设椭圆方程为
(a>b>0).
因为
,得
.又
,则
.
故椭圆的标准方程是
. (5分)
(Ⅱ)由椭圆方程知,c=1,所以焦点F(0,1),设点A(x1,y1),B(x2,y2).
由
,得(-x1,1-y1)=λ(x2,y2-1),所以-x1=λx2,1-y1=λ(y2-1). (7分)
于是
.因为
,
,则y1=λ2y2.
联立y1=λ2y2和1-y1=λ(y2-1),得y1=λ,y2=. (8分)
因为抛物线方程为y=x2,求导得y′=x.设过抛物线上的点A、B的切线分别为l1,l2,则
直线l1的方程是y=x1(x-x1)+y1,即y=x1x-x12. (9分)
直线l2的方程是y=x2(x-x2)+y2,即y=x2x-x22. (10分)
联立l1和l2的方程解得交点M的坐标为
. (11分)
因为x1x2=-λx22=-4λy2=-4. 所以点M
. (12分)
于是
,
(x2-x1,y2-y1).
所以
=
=(x22-x12)-2(x22-x12)=0.
故
为定值0. (13分)
科目:高中数学 来源: 题型:
| |PF| |
| |PD| |
| |QF| |
| |BF| |
| |AO| |
| |BO| |
| |AF| |
| |AB| |
| |FO| |
| |AO| |
| A、1个 | B、3个 | C、4个 | D、5个 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| 2 |
| 2 |
| F2P |
| F2Q |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| 5 |
| y2 |
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| |PF| |
| |PD| |
| |QF| |
| |BF| |
| |AO| |
| |BO| |
| |AF| |
| |AB| |
| |FO| |
| |AO| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com