精英家教网 > 高中数学 > 题目详情
15.海轮“和谐号”从A处以每小时21海里的速度出发,海轮“奋斗号”在A处北偏东45°的方向,且与A相距10海里的C处,沿北偏东105°的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为$\frac{2}{3}$小时.

分析 设海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为x小时,由已知得△ABC中,AC=10,AB=21x,BC=9x,∠ACB=120°,由此利用余弦定理能求出结果.

解答 解设海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为x小时,
如图,则由已知得△ABC中,AC=10,AB=21x,BC=9x,∠ACB=120°,
由余弦定理得:(21x)2=100+(9x)2-2×10×9x×cos120°,
整理,得36x2-9x-10=0,
解得x=$\frac{2}{3}$或x=-$\frac{5}{12}$(舍).
∴海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为$\frac{2}{3}$小时.
故答案为:$\frac{2}{3}$.

点评 本题考查解三角形在生产生活中的实际运用,是中档题,解题时要认真审题,作出图形,利用余弦定理求解.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年新疆库尔勒市高二上学期分班考试数学(理)试卷(解析版) 题型:填空题

中,,点M是 AB上的动点(包含端点),则的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|y=$\sqrt{1-x}$},B={x|x≤2},则(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=(-∞,2]

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二8月月考数学试卷(解析版) 题型:选择题

若三个平面两两相交,有三条交线,则下列命题中正确的是( )

A.三条交线为异面直线

B.三条交线两两平行

C.三条交线交于一点

D.三条交线两两平行或交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设直线l与双曲线x2-y2=1的右支相交于M,N两点,与⊙C:(x-4)2+y2=r2(r>0)相切于点P,且P为线段MN的中点,若这样的直线l恰有4条,则r的取值范围是(  )
A.($\sqrt{2}$,$\sqrt{6}$)B.($\sqrt{2}$,$\sqrt{7}$)C.(2,$\sqrt{6}$)D.(2,$\sqrt{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有一名同学家开了一个小卖部,他为了研究气温对某种引领销售的影响,记录了2015年7月至12月每月15号下午14时的气温和当天卖出的饮料杯数,得到如下资料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
摄氏温度x(℃)36353024188
饮料杯数y27292418155
该同学确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选中的2组数据进行检验.
(1)求选取2组数据恰好是相邻的两个月的概率;
(2)若选中的是8月与12月的两组数据,根据剩下的4组数据,求出y关于x的线性回归方程$\hat y=bx+\hat a$.
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线$\hat a=\overline y-\hat b\overline x$的斜率和截距的最小二乘估计分别为:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=$\left\{\begin{array}{l}{1+lg(2-x),(x<1)}\\{1{0}^{(x-1)},(x≥1)}\end{array}\right.$,则f(-8)+f(lg40)=(  )
A.5B.6C.9D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一般来说,一个人脚掌越长,他的身高越高,现对10名成年人的脚掌长x与身高y进行测量,得到数据(单位均为cm)作为一个样本如下表所示:
脚掌长(x)
 
20212223242526272829
身高(y)141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现三点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+a
(2)若某人的脚掌长为26cm,试估计此人的升高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人在190cm以上的概率. 
参考数据:$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5)
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\overline{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{1}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题的得分情况,该题满分为12分.已知甲、乙两组的平均成绩相同,乙组某个数据的个位数模糊,记为x.
(Ⅰ)求x的值,并判断哪组学生成绩更稳定;
(Ⅱ)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.

查看答案和解析>>

同步练习册答案