精英家教网 > 高中数学 > 题目详情
4.已知点A(-2,-1),B(1,-5),点P是圆C:(x-2)2+(y-1)2=4上的动点,则△PAB面积的最大值与最小值之差为10.

分析 先求得|AB|=5,所以当点P到直线AB距离最大值与最小值时,△PAB面积取最大值与最小值计算,求得结果.

解答 解:由于底边AB为定值5,
所以当点P到直线AB距离最大值与最小值时,△PAB面积取最大值与最小值,
因此△PAB面积的最大值与最小值之差为$\frac{1}{2}[(d+r)-(d-r)]•AB$=2×5=10.
故答案为:10.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知直线l过点P(2,0),斜率为$\frac{4}{3}$,直线l和抛物线y2=2x相交于A、B两点,线段AB的中点为M.求:
(1)写出直线l的一个参数方程;
(2)线段PM的长|PM|;
(3)线段AB的长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且过点(-2,3).
(1)求椭圆C的方程;
(2)过椭圆C的右焦点作两条相互垂直的直线l,m,且直线l交椭圆C于M、N两点,直线m交椭圆C于P、Q两点,求|MN|+|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin45°sin75°+sin45°sin15°=(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题p:若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角;
命题q:若函数f(x)在(-∞,0]及(0,+∞)上都是减函数,则f(x)在(-∞,+∞)上是减函数.下列说法:①“p∨q”是真命题;②“p∨q”是假命题;③非p为假命题;④非q为假命题.
其中正确的是②(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在ABC中,D是BC上的一点.已知∠B=60°,AD=2,AC=$\sqrt{10}$,DC=2,则AB=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,|φ|<$\frac{π}{2}$),图象上有一个最低点是P(-$\frac{π}{6}$,-1),对于f(x1)=1,f(x2)=3,|x1-x2|的最小值为$\frac{π}{4}$.
(Ⅰ)若f(α+$\frac{π}{12}$)=$\frac{11}{8}$,且α为第三象限的角,求sinα+cosα的值;
(Ⅱ)讨论y=f(x)+m在区间[0,$\frac{π}{2}$]上零点的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,直线PA与圆切于点A,过P作直线与圆交于C、D两点,点B在圆上,且∠PAC=∠BCD.
(1)求证:∠PCA=∠BAC;
(2)若PC=2AB=2,求$\frac{AP}{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.边长为a的正方体ABCD-A1B1C1D1中,P在棱DD1上运动,Q在底面ABCD上运动,但PQ为定长b(a<b<$\sqrt{3}$a),R为PQ的中点,则动点R的轨迹在正方体内的面积是(  )
A.$\frac{π{b}^{2}}{2}$B.$\frac{π{b}^{2}}{4}$C.$\frac{π{b}^{2}}{8}$D.$\frac{π{b}^{2}}{16}$

查看答案和解析>>

同步练习册答案