精英家教网 > 高中数学 > 题目详情
13.如图,直线PA与圆切于点A,过P作直线与圆交于C、D两点,点B在圆上,且∠PAC=∠BCD.
(1)求证:∠PCA=∠BAC;
(2)若PC=2AB=2,求$\frac{AP}{BC}$.

分析 (1)证明∠ABC=∠BCD,即可证明AB∥PD,可得:∠PCA=∠BAC;
(2)证明△PAC~△CBA,则$\frac{PC}{AC}=\frac{AC}{AB}=\frac{PA}{BC}$,即可求$\frac{AP}{BC}$.

解答 (1)证明:∵直线PA与圆切于点A,∴∠PAC=∠ABC,…(2分)
∵∠PAC=∠BCD,∴∠ABC=∠BCD,…(3分)
∴AB∥PD,…(4分)
∴∠PCA=∠BAC…(5分)
(2)解:∵∠PCA=∠BAC,∠PAC=∠ABC,
∴△PAC~△CBA,则$\frac{PC}{AC}=\frac{AC}{AB}=\frac{PA}{BC}$,…(7分)
∵PC=2AB=2,∴AC2=AB•PC=2,即$AC=\sqrt{2}$,…(9分)
∴$\frac{AP}{BC}=\frac{AC}{AB}=\sqrt{2}$…(10分)

点评 本题考查圆的切线的性质,考查三角形相似的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)是定义在R上的奇函数,且当x<0时,不等式f(x)+xf′(x)<0成立,若a=(0.33)f(0.33),b=(logπ3)f(logπ3),c=(log3$\frac{1}{9}$)f(log3$\frac{1}{9}$),则a,b,c间的大小关系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A(-2,-1),B(1,-5),点P是圆C:(x-2)2+(y-1)2=4上的动点,则△PAB面积的最大值与最小值之差为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的一条渐近线过点($\sqrt{2}$,1),则此双曲线的一个焦点坐标是(  )
A.($\sqrt{2},0$)B.(2,0)C.($\sqrt{6},0$)D.($\sqrt{10},0$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=Asin(2x+φ)(|φ|≤$\frac{π}{2}$,A>0)部分图象如图所示,且f(a)=f(b)=0,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,则(  )
A.f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是减函数B.f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是增函数
C.f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是减函数D.f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,已知△PF1F2的两个顶点为F1(-$\sqrt{2}$a,0),F2($\sqrt{2}$a,0)(a>0),顶点P在曲线C上运动,△PF1F2的内切圆与x轴的切点为A,满足|AF1|-|AF2|=2a.
(1)设D(m,n)为曲线C上一点,试判断直线l:mx-ny=a2与曲线C的位置关系;
(2)过曲线C上任意两个不同点M,N分作C的切线l1,l2,若l1与l2的交点为E,试探究:对于任意的正实数a,直线OE(O是原点)是否经过MN的中点G?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求值:
(1)$(-\frac{1}{8}{)^{\frac{1}{3}}}+(-\frac{{\sqrt{5}}}{2}{)^0}+{log_2}\sqrt{2}+{log_2}3•{log_3}4$
(2)若$α=\frac{π}{3}$,求$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率$e=\frac{{\sqrt{2}}}{2}$,椭圆上的点到焦点的最短距离为$1-\frac{{\sqrt{2}}}{2}$,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B,且$\overline{AP}=3\overline{PB}$.
(1)求椭圆C的方程;
(2)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若P(A)=0.5,P(B)=0.3,P(AB)=0.2,则P(A|B)=$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案