精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心在轴的负半轴上,半径长是5,且过点

1)求圆的方程;

2)若直线与圆交于AB两点,且,求直线的方程.

【答案】1.2

【解析】

1)因为圆的圆心在轴的负半轴上,半径长是5,且过点,设圆心为:,可得,将代入,即可求得答案;

2)直线与圆交于两点,点,根据题意画出草图,数形结合求得:,根据点到直线距离公式,即可求得值,即可求得答案.

1的圆心在轴的负半轴上,半径长是5,且过点

设圆心为:

可得:

代入可得:

解得:()

的方程:

2)直线与圆交于两点

根据题意画出草图,如图:

中,根据勾股定理可得:

的圆心导到直线距离为:

直线的一般方程为:

根据点到直线距离公式:

整理可得:,即

解得:

故直线方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径.每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.

1)利用分层抽样在三组中抽取5人,应从这三组中各抽取几人?

2)从(1)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;

3)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)当n123时,分别比较f(n)g(n)的大小(直接给出结论);

2)由(1)猜想f(n)g(n)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数

(1)讨论函数在区间上的单调性;

(2)若存在两个极值点,且,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数x

1)判断的奇偶性,并用定义证明;

2)若不等式上恒成立,试求实数a的取值范围;

3的值域为函数上的最大值为M,最小值为m,若成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:

0

1

2

3

0

0.7

1.6

3.3

为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Qav3bv2cvQ=0.5vaQklogavb

(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;

(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数

(1)若函数为奇函数,求m的值;

(2)若函数上是增函数,求实数m的取值范围;

(3)若函数上的最小值为,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线交椭圆两点,若的最大值为5,则b的值为( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,且投资1万元时的收益为万元,投资股票等风险型产品的收益与投资额的算术平方根成正比,且投资1万元时的收益为0.5万元,

1)分别写出两种产品的收益与投资额的函数关系;

2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?

查看答案和解析>>

同步练习册答案