精英家教网 > 高中数学 > 题目详情
2.已知m∈R,i为虚数单位,且(m+2i)2=-3+4i.
(1)求实数m的值;
(2)若|z-1|=|m+2i|,求复数z在复平面上所对应的点P的轨迹方程.

分析 (1)根据对应关系求出m的值即可;
(2)设z=x+yi,得到|x-1+yi|=|1+2i|,即(x-1)2+y2=5,从而求出轨迹方程即可.

解答 解:(1)∵(m+2i)2=-3+4i,
∴m2+4mi-4=-3+4i,
∴m=1;
(2)若|z-1|=|m+2i|,
由(1)得:|z-1|=|1+2i|,
设z=x+yi,
则|x-1+yi|=|1+2i|,
∴(x-1)2+y2=5,
故复数z在复平面上所对应的点P的轨迹方程是:
以(1,0)为圆心,以$\sqrt{5}$为半径的圆.

点评 本题考查了复数的运算,考查圆的方程,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.对于任意实数x,符号[x]表示不超过x的最大整数,如[2.2]=2,[-3.5]=-4,设数列{an}的通项公式为an=[log21]+[log22]+[log23]+…[log2(2n-1)].
(Ⅰ)求a1•a2•a3的值;
(Ⅱ)是否存在实数a,使得an=(n-2)•2n+a(n∈N*),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若(x$\sqrt{x}$+$\frac{1}{{x}^{4}}$)n的展开式中,第二、三、四项的二项式系数成等差数列.
(1)求n的值;
(2)此展开式中是否有常数项,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+ϕ)(ω>0)的部分图象如图所示,下面结论正确的个数是(  )
①函数f(x)的最小正周期是2π
②函数f(x)的图象可由函数g(x)=sin2x的图象向左平移$\frac{π}{3}$个单位长度得到
③函数f(x)的图象关于直线x=$\frac{π}{12}$对称
④函数f(x)在区间[$\frac{π}{12},\frac{π}{6}}$]上是增函数.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=$\frac{i}{1+2i}$(i是虚数单位),则z的共轭复数$\overline{z}$=(  )
A.$\frac{2}{5}$-$\frac{1}{5}$iB.-$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{2}{5}$-$\frac{1}{5}$iD.$\frac{2}{5}$+$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某班一次数学测试成绩的茎叶图(茎上数代表十位,叶上数代表个位)如图1所示.
(1)以10为组距,在图2给定的坐标系中画出该班成绩的频率分布直方图;
(2)用分层抽样的方法抽取一个容量为8的样本,在样本中从分数在[60,80)之间的试卷中任取3份分析学生失分情况,设抽取的试卷分数在[70,80)的分数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知钝角α满足sinα=$\frac{\sqrt{3}}{2}$,则α=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线x-ay+a=0与直线3x+y+2=0垂直,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AA1的中点,则点C1到平面BDE的距离为$\sqrt{6}$.

查看答案和解析>>

同步练习册答案