精英家教网 > 高中数学 > 题目详情
14.已知钝角α满足sinα=$\frac{\sqrt{3}}{2}$,则α=$\frac{2π}{3}$.

分析 直接利用特殊角的三角函数,即可得出结论.

解答 解:∵钝角α满足sinα=$\frac{\sqrt{3}}{2}$,
∴α=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题考查特殊角的三角函数,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知数据x1,x2,x3,…,xn是广州市n(n≥3,n∈N*)个普通职工的2015年的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上比尔.盖茨的2015年的年收入xn+1(约80亿美元),则这n+1个数据中,下列说法正确的是(  )
A.y大大增大,x一定变大,z可能不变B.y大大增大,x可能不变,z变大
C.y大大增大,x可能不变,z也不变D.y可能不变,x可能不变,z可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简:
(1)sin420°cos330°+sin(-690°)•cos(-660°);
(2)$\frac{sin(\frac{π}{2}+α)cos(\frac{π}{2}-α)}{cos(π+α)}$+$\frac{sin(π-α)cos(\frac{π}{2}+α)}{sin(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知m∈R,i为虚数单位,且(m+2i)2=-3+4i.
(1)求实数m的值;
(2)若|z-1|=|m+2i|,求复数z在复平面上所对应的点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-2),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上的奇函数,且f(-3)=0,当x>0时,有f(x)-xf′(x)>0成立,则不等式f(x)>0的解集是(  )
A.(-∞,-3)∪(0,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(0,3)D.(-3,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.四边形ABCD中,$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3).
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x与y满足的关系式;
(2)满足(1)的同时又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={a,b}⊆{x|1≤x≤2016,x∈N*},若集合M的元素同时满足以下两个条件:①a,b∈{x|x=n2,n∈N*};②a,b∈{x|x=2n,n∈N*},则符合条件的集合M的个数为(  )
A.5B.10C.15D.31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A,B是函数f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$的图象上任意两点,且$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),点M($\frac{1}{2}$,m).
(I)求m的值;
(II)若Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),n∈N*,且n≥2,求Sn
(III)已知an=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{{S}_{n},n≥2}\end{array}\right.$,其中n∈N*.Tn为数列{an}的前项和,若Tn>λ(Sn+1+1)对一切n∈N*都成立,试求λ的取值范围.

查看答案和解析>>

同步练习册答案