【题目】如图所示,在四棱锥
中,底面
是
且边长为
的菱形,侧面
为正三角形,其所在平面垂直于底面
.
![]()
(1)若
为
边的中点,求证:
平面
.
(2)求证:
.
(3)若
为
边的中点,能否在
上找出一点
,使平面
平面
?
科目:高中数学 来源: 题型:
【题目】已知点
为抛物线
的焦点,点
、
在抛物线上,且
、
、
三点共线.若圆
的直径为
.
(1)求抛物线
的标准方程;
(2)过点
的直线
与抛物线交于点
,
,分别过
、
两点作抛物线
的切线
,
,证明直线
,
的交点在定直线上,并求出该直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 |
|
|
|
|
|
|
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在
的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为
,求
的分布列和数学期望.
参考公式:
,其中
.
临界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正三棱柱
(底面是正三角形,侧棱垂直底面)的各条棱长均相等,
为
的中点,
、
分别是
、
上的动点(含端点),且满足
.当
、
运动时,下列结论中正确的个数是( )
![]()
①平面
平面
;
②三棱锥
的体积为定值;
③
可能为直角三角形;
④平面
与平面
所成的锐二面角范围为
.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.
![]()
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求几何体D﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形ABCD中,E,F是AD,BD中点,
,
,将
沿对角线BD折起至
,使平面
平面BCD,则四面体
中,下列结论不正确的是( )
![]()
A.
平面![]()
B.异面直线CD与
所成的角为![]()
C.异面直线EF与
所成的角为![]()
D.直线
与平面BCD所成的角为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为
,第二次投篮命中的概率为
,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为
,否则为
.
(1)求张强同学三次投篮至少命中一次的概率;
(2)记张强同学三次投篮命中的次数为随机变量
,求
的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数),
为
的导函数,且
.
(1)求实数
的值;
(2)若函数
在
处的切线经过点
,求函数
的极值;
(3)若关于
的不等式
对于任意的
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com