分析 化简已知条件可得a2+b2=$\frac{3}{2}$c2.再利用正弦定理、余弦定理化简要求的式子为 $\frac{{c}^{2}}{ab•cosC}$=$\frac{{c}^{2}}{ab}$•$\frac{2ab}{{a}^{2}{+b}^{2}{-c}^{2}}$,从而求得结果.
解答 解:锐角三角形ABC中,∵$\frac{b}{a}$+$\frac{a}{b}$=6cosC,则由余弦定理可得 $\frac{{a}^{2}{+b}^{2}}{ab}$=6•$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$,
化简可得a2+b2=$\frac{3}{2}$c2.
又 $\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=$\frac{sinCcosA}{cosCsinA}$+$\frac{sinCcosB}{cosCsinB}$=$\frac{sinC}{cosC}$•($\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$)=$\frac{sinC}{cosC}•$ $\frac{sinBcosA+cosBsinA}{sinA•sinB}$=$\frac{{sin}^{2}C}{sinAsinBcosC}$
=$\frac{{c}^{2}}{ab•cosC}$=$\frac{{c}^{2}}{ab}$•$\frac{2ab}{{a}^{2}{+b}^{2}{-c}^{2}}$=$\frac{{2c}^{2}}{{\frac{3}{2}c}^{2}{-c}^{2}}$=4,
故答案为:4.
点评 本题主要考查了三角形的 正弦定理与余弦定理的综合应用求解三角函数值,属于基本公式的综合应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2007}{2008}$ | B. | $\frac{2008}{2009}$ | C. | $\frac{2007}{2009}$ | D. | $\frac{2008}{2007}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | m | 4 | 4.5 |
| A. | 4 | B. | 3.15 | C. | 4.5 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{84}{125}$ | B. | $\frac{81}{125}$ | C. | $\frac{36}{125}$ | D. | $\frac{27}{125}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com