| A. | $\frac{2007}{2008}$ | B. | $\frac{2008}{2009}$ | C. | $\frac{2007}{2009}$ | D. | $\frac{2008}{2007}$ |
分析 通过整理可知方程y=0的两根分别为:$\frac{1}{n}$、$\frac{1}{n+1}$,进而并项相加即得结论.
解答 解:y=(n2+n)x2-(2n+1)x+1
=n(n+1)x2-[n+(n+1)]x+1
=(nx-1)[(n+1)x-1],
∴方程y=0的两根分别为:$\frac{1}{n}$、$\frac{1}{n+1}$,
∴|AnBn|=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴|A1B1|+|A2B2|+…+|A2008B2008|
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2008}$-$\frac{1}{2009}$
=1-$\frac{1}{2009}$
=$\frac{2008}{2009}$,
故选:B.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{15}}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
| B. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” | |
| C. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
| D. | 有99%以上的把握认为“爱好该项运动与性别无关” |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-cos2x+1 | B. | y=cos2x+1 | C. | y=sin(2x+$\frac{π}{4}$)+1 | D. | y=sin(2x-$\frac{π}{4}$)+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com