精英家教网 > 高中数学 > 题目详情
16.在△ABC中,若a=4.b=3,c=2,则△ABC边BC的中线AD长为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{15}}{2}$D.$\frac{5}{2}$

分析 在△ABC中,由余弦定理可得cosB的值,在△ABD中,由余弦定理即可求得AD的值.

解答 解:由题意,在△ABC中,由余弦定理可得:cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{4+16-9}{2×2×4}$=$\frac{11}{16}$,
在△ABD中,由余弦定理可得:AD=$\sqrt{A{B}^{2}+B{D}^{2}-2AB•AD•cosB}$=$\sqrt{4+4-2×2×2×\frac{11}{16}}$=$\frac{\sqrt{10}}{2}$.
故选:B.

点评 本题主要考查了余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知正方体的棱长为a,该正方体的外接球的半径为$\sqrt{3}$,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的正视图、侧视图、俯视图如图所示,则该几何体的表面积为4+2π+2$\sqrt{2}$π.体积分别为$\frac{4}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,∠BAC=120°,AB=2,AC=1.AD是∠BAC的角平分线,交BC于D.
(Ⅰ)求BD:DC的值;
(Ⅱ)求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(-2sinx,$\sqrt{3}$(cosx+sinx)),$\overrightarrow{b}$=(cosx,cosx-sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(x∈R).
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)已知数列an=n2f($\frac{nπ}{2}$-$\frac{11π}{24}$)(n∈N+),求{an}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于每个自然数.抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,|AnBn|表示这两点间的距离,那么|A1B1|+|A2B2|+…+|A2008B2008|的值(  )
A.$\frac{2007}{2008}$B.$\frac{2008}{2009}$C.$\frac{2007}{2009}$D.$\frac{2008}{2007}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若以C的焦点F为圆心a为半径的圆,截双曲线的渐近线所得弦长为b,则此双曲线的离心率是(  )
A.$\frac{3\sqrt{5}}{5}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{15}}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△OAB顶点的坐标为O(0,0),A(1,3),B(4,2).
(1)求点A到直线OB的距离d及△OAB的面积S△OAB
(2)求△OAB外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,D为BC边中点,O为△ABC内一点,且$\overrightarrow{OC}$=2$\overrightarrow{AO}$+$\overrightarrow{BO}$,则$\frac{{S}_{△AOC}}{{S}_{△BOD}}$=(  )
A.$\frac{5}{3}$B.$\frac{3}{2}$C.2D.1

查看答案和解析>>

同步练习册答案