精英家教网 > 高中数学 > 题目详情
20.已知等比数列[an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}}$+log2$\frac{1}{{a}_{n}}$,Sn=b1+b2+…+bn,求使Sn+35<0成立的n的最小值.

分析 (1)根据等差数列和等比数列的性质即可求出数列{an}的通项公式,
(2)先化简bn,再分别根据等比数列和等差数列的前n项和公式和放缩法即可求出n的最小值.

解答 解:(1)设等比数列{an}的公比为q,依题意:有2a1+a1q2=3a1q,
解得q=1或q=2,
∵a3+2是a2,a4的等差中项,
∴2a3+4=a2+a4
即2a1q2+4=a1q+a1q3
当q=1时,不成立,
当q=2时,a1=2,
∴an=2n
(2)bn=$\frac{1}{{a}_{n}}$+log2$\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n}}$-n,
∴Sn=b1+b2+…+bn=($\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(1+2+3+…+n)=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n(n+1)}{2}$=1-$\frac{1}{{2}^{n}}$-$\frac{n(n+1)}{2}$
∵Sn+35<0,
∴1-$\frac{1}{{2}^{n}}$-$\frac{n(n+1)}{2}$+35<0,
∴$\frac{1}{{2}^{n}}$+$\frac{n(n+1)}{2}$>36恒成立,
∴$\frac{n(n+1)}{2}$≥36恒成立,
∴n(n+1)≥72,
解得n≥8,
∴使Sn+35<0成立的n的最小值是8.

点评 本题考查了等比数列和等差的数列的性质以及前n项和公式以及数列和不等式的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,∠BAC的平分线与BC和△ABC的外接圆分别相交于D和E,延长AC交过D,E,C三点的圆于点F.
(1)求证:EC=EF;
(2)若ED=2,EF=3,求AC•AF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设命题p:函数f(x)=e2x-3在R上为增函数;命题q:?x0∈R,x02-x0+2<0.则下列命题中真命题是(  )
A.p∧qB.(¬p)∨qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,程序框图的输出结果是(  )
A.7B.8C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:x2+mx+1=0有两个不相等的负实根,q:方程4x2+4(m-2)x+1=0无实根,求:当p或q为真时m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.北京某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)n0.350
第3组[170,175)30p
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.000
(1)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至多有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线l经过原点和点A(2,2),则它的倾斜角为(  )
A.-45°B.45°C.135°D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,已知第10项等于17,前10项的和等于80.从该数列中依次取出第3项、第32项…第3n项,并按原来的顺序组成一个新数列{bn}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.应用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为$\frac{1}{3}$,则在整个抽样过程中,每个个体被抽到的概率为$\frac{5}{14}$.

查看答案和解析>>

同步练习册答案