精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=(a-1)x+b是R上的减函数,则有(  )
A.a≥1B.a≤1C.a>-1D.a<1

分析 由条件根据一次函数的单调性,求得a的范围.

解答 解:根据函数f(x)=(a-1)x+b是R上的减函数,则有a-1<0,
求得a<1,
故选:D.

点评 本题主要考查一次函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若α是锐角,且cos(α+$\frac{π}{3}$)=$\frac{\sqrt{3}}{3}$,则sinα的值等于(  )
A.$\frac{\sqrt{6}+3}{6}$B.$\frac{\sqrt{6}-3}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{6}-1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下图程序中,当输入的a,b是两个正整数,且a>b时,程序的功能是输出a,b最大公约数..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A,B满足A∪B={1,2,3,…,8},A∩B=∅且A≠∅.若A中元素的个数不是A中的元素,B中元素的个数不是B中的元素,则满足条件的所有不同的集合A的个数为44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平面内到两定点F1、F2的距离之比等于常数m(m>0且m≠1)的点的轨迹称为阿波罗尼斯圆,已知曲线C是平面内到两定点F1(-1,0),F2(1,0)距离之比等于常数m(m>0,m≠1)的点的轨迹,下面选项正确的是(  )
A.曲线C关于坐标原点对称B.曲线C关于y轴对称
C.曲线C关于x轴对称D.曲线C过坐标原点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x2+4x+7-a的最小值为2,则函数y=f(x-2015)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.点A位于双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上,F1F2是它的两个焦点,求△AF1F2的重心G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn且Sn=$\frac{3}{2}$an-n(n∈N*).
(1)求证:数列{an+1}是等比数列,并求出数列{an}的通项公式.
(2)求证:$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+$\frac{{a}_{3}}{{a}_{4}}$+…+$\frac{{a}_{n}}{{a}_{n+1}}$>$\frac{n}{3}$-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=${log_{\frac{1}{2}}}$(3x-x2-2)的单调递减区间是(  )
A.(1,2)B.(2,+∞)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

同步练习册答案