精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{|x-1|-2}&{|x|≤1}\\{\frac{1}{1+{x}^{2}}}&{|x|>1}\end{array}\right.$,若f(a)=$\frac{1}{5}$,求a的值.

分析 直接利用分段函数以及方程求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{|x-1|-2}&{|x|≤1}\\{\frac{1}{1+{x}^{2}}}&{|x|>1}\end{array}\right.$,若f(a)=$\frac{1}{5}$,
当|a|≤1,即-1≤a≤1时,|a-1|-2=$\frac{1}{5}$,解得a=$-\frac{6}{5}$或$\frac{16}{5}$,不满足题意.
当|a|>1,即-1>a,或a>1时,$\frac{1}{1+{a}^{2}}=\frac{1}{5}$,解得a=-2或2,满足题意.
综上,a的值为:±2.

点评 本题考查分段函数的应用,方程的解与根的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若($\frac{2}{3}$)1+a<($\frac{9}{4}$)a,则实数a的取值范围是a>-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)的图象的相邻两个对称中心的坐标分别为($\frac{π}{9}$,0),($\frac{4π}{9}$,0),为了得到f(x)的图象,只需将g(x)=2sinωx的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向左平移$\frac{π}{9}$个单位
C.向右平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{9}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=$\frac{\sqrt{2-x}}{2x-3}$的定义域为{x|x≤2,且x≠$\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知奇函数f(x)=$\frac{x+n}{{x}^{2}+m}$的定义域为R,f(2)=$\frac{2}{5}$.
(1)求实数m,n的值;
(2)若g(x)=log2x-f(x),求证函数g(x)在(0,+∞)上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.图中交通标志表示限制高度,即汽车装满货物后,距离地面最大高度不超过3.5米,如果用h表示高度,那么可得如下哪个不等式?(  )
A.h≤3.5B.h≥3.5C.h<3.5D.h>3.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tan(α-$\frac{π}{12}$)=2,则tan(α-$\frac{π}{3}$)的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.小明身高比小强高,小强身高比小丽高,那么小明身高比小丽高,上述描述符号不等式的哪个性质(  )
A.如果a>b,那么b<a;如果b<a,那么a>b
B.如果a>b,b>c,那么a>c
C.如果a>b,那么a+c>b+c
D.如果a>b,c>0,那么ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)上一点Q(2,t)到抛物线C的焦点F的距离为$\frac{5}{2}$.
(1)求抛物线C的方程;
(2)若P(x0,y0)(x0>2)是抛物线C上的动点,点M,N在y轴上,圆(x-1)2+y2=1内切于△PMN,求△PMN的面积的最小值,并求出此时P点的坐标.

查看答案和解析>>

同步练习册答案