【题目】最近几年汽车金融公司发展迅猛,主要受益于监管层面对消费进人门槛的降低,互联网信贷消费的推广普及,以及汽车销售市场规模的扩张.如图是2013﹣2017年汽车金融行业资产规模统计图(单位:亿元).
![]()
(1)以年份值2013,2014,…为横坐标,汽车金融行业资产规模(单位:亿元)为纵坐标,求y关于x的线性回归方程;
(2)利用(1)中的回归方程,预计2018年汽车金融行业资产规模(精确到亿元).
附:回归直线的斜率和截距的最小二乘估计公式分别为
,
(其中
,
为样本平均值).
参考数据:
4.620×107,2015
4.619×107.
科目:高中数学 来源: 题型:
【题目】已知函数
(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在
上恒成立,则a的取值范围是a>1;
④对任意的x1<0,x2<0且x1≠x2,恒有
.
其中正确命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=lnx-ax,若函数在定义域上有且仅有4个零点,则实数a的取值范围是( )
A.(e,+∞)B.(0,
)
C.(1,
)D.(-∞,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
分别是椭圆
的左、右焦点,已知椭圆的长轴为
是椭圆
上一动点,
的最大值为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,
为椭圆
上一点,
为坐标原点,且满足
,其中
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在南北方向有一条公路,一半径为100
的圆形广场(圆心为
)与此公路所在直线
相切于点
,点
为北半圆弧(弧
)上的一点,过点
作直线
的垂线,垂足为
,计划在
内(图中阴影部分)进行绿化,设
的面积为
(单位:
),
![]()
(1)设
,将
表示为
的函数;
(2)确定点
的位置,使绿化面积最大,并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,其中
是自然对数的底数.
(1)若
,
,证明
;
(2)是否存在实数
,使得函数
在区间
上有两个零点?若存在,求出
的取值范围:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为________年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是梯形,
,
,
是正三角形,
为
的中点,平面
平面
.
![]()
(1)求证:
平面
;
(2)在棱
上是否存在点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com