【题目】设函数,其中是自然对数的底数.
(1)若,,证明;
(2)是否存在实数,使得函数在区间上有两个零点?若存在,求出的取值范围:若不存在,请说明理由.
【答案】(1)证明见解析(2)不存在实数,详见解析
【解析】
(1)分类讨论,时直接证明,时,利用导数研究函数的单调性,最小值可证得不等式成立;
(2)时,由(1)可知无零点,时,仍然利用导数研究函数的单调性,函数极值,结合零点存在定理确定零点个数.
(1)证明:①若,则当时,,,所以;
②若,因为,
设,,
当时,,所以在上单调递增,
所以,
所以在上单调递增,所以,
综上所述,若,,则.
(2)不存在实数,使得函数在区间上有两个零点.
理由如下:
(1)若,由(1)知,在上单调递增,且,所以函数在区间上无零点;
(2)若,由(1)知,当时,
所以在上单调递增.因为,,
所以在上存在唯一的零点,
即方程在上存在唯一解,
且当时,,当,,
所以函数在上单调递减,在上单调递增,
当时,,所以在无零点;
当时,,,
所以在上有唯一零点,
故当时,在上有一个零点,
综上所述,不存在实数,使得函数在区间上有两个零点.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线经过点,且与极轴所成的角为.
(1)求曲线的普通方程及直线的参数方程;
(2)设直线与曲线交于两点,若,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】最近几年汽车金融公司发展迅猛,主要受益于监管层面对消费进人门槛的降低,互联网信贷消费的推广普及,以及汽车销售市场规模的扩张.如图是2013﹣2017年汽车金融行业资产规模统计图(单位:亿元).
(1)以年份值2013,2014,…为横坐标,汽车金融行业资产规模(单位:亿元)为纵坐标,求y关于x的线性回归方程;
(2)利用(1)中的回归方程,预计2018年汽车金融行业资产规模(精确到亿元).
附:回归直线的斜率和截距的最小二乘估计公式分别为,(其中,为样本平均值).
参考数据:4.620×107,20154.619×107.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求在处的切线方程;
(2)令,已知函数有两个极值点,且,
①求实数的取值范围;
②若存在,使不等式对任意(取值范围内的值)恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的值为0,则开始输入的值为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】网购已经成为一种新型的购物方式,2018年天猫双11,仅1小时47分钟成交额超过1000亿元,比2017年达到1000亿元的时间缩短了7个小时,为了研究市民对网购的依赖性,从A城市16﹣59岁人群中抽取一个容量为100的样本,得出下列2×2列联表,其中16﹣39岁为青年,40﹣59岁为中年,当日消费金额超过1000元为消费依赖网购,否则为消费不依赖网购.
依赖网购 | 不依赖网购 | 小计 | |
青年(16﹣39岁) | 40 | 20 | |
中年(40﹣59岁) | 20 | 20 | |
小计 |
(1)完成2×2列联表,计算X2值,并判断是否有95%的把握认为网购依赖和年龄有关?
(2)把样本中的频率当作概率,随机从A城市中选取5人,其中依赖网购的人数为随机变量X,求随机变量X的分布列及期望(附:X2,当X2>3.841时,有95%的把握说事件A与B有关,当X2≤3.841时,没有95%的把握说事件A与B有关)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业要设计制造一批大小、规格相同的长方体封闭水箱,已知每个水箱的表面积为432(每个水箱的进出口所占面积与制作材料的厚度均忽略不计).每个长方体水箱的底面长是宽的2倍.现设每个长方体水箱的底面宽是,用表示每个长方体水箱的容积.
(1)试求函数的解析式及其定义域;
(2)当为何值时,有最大值,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com