精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,椭圆C:+=1.
(1)若椭圆C的焦点在x轴上,求实数m的取值范围;
(2)若m=6,
①P是椭圆C上的动点,M点的坐标为(1,0),求PM的最小值及对应的点P的坐标;
②过椭圆C的右焦点F 作与坐标轴不垂直的直线,交椭圆C于A,B两点,线段AB的垂直平分线l交x轴于点N,证明: 是定值,并求出这个定值.
【答案】分析:(1)由焦点在x轴上得,m>8-m>0,解出即可;
(2)①设点P坐标为(x,y),则,由两点间距离公式可表示出PM2,根据二次函数的性质即可求得PM2的最小值,从而得到PM的最小值,注意x的取值范围;②易求焦点F的坐标及右准线方程,设A(x1,y1),B(x2,y2),AB的中点H(x,y),利用平方差法可用H坐标表示直线AB的斜率,用点斜式写出AB中垂线方程,从而得点N横坐标,进而得到线段FN的长,由第二定义可表示出线段AB长, 是定值可证;
解答:解:(1)由题意得,m>8-m>0,解得4<m<8,
所以实数m的取值范围是(4,8);
(2)因为m=6,所以椭圆C的方程为
①设点P坐标为(x,y),则
因为点M的坐标为(1,0),
所以PM2=(x-1)2+y2===
所以当x=时,PM的最小值为,此时对应的点P坐标为();
②由a2=6,b2=2,得c2=4,即c=2,
从而椭圆C的右焦点F的坐标为(2,0),右准线方程为x=3,离心率e=
设A(x1,y1),B(x2,y2),AB的中点H(x,y),

两式相减得,,即
令k=kAB,则线段AB的垂直平分线l的方程为y-y=-(x-x),
令y=0,则xN=ky+x=
因为F(2,0),所以FN=|xN-2|=
因为AB=AF+BF=e(3-x1)+e(3-x2)=|x-3|.
==,即为定值
点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解及椭圆的第二定义,考查学生综合运用知识分析解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案