【题目】已知函数,其中,为自然对数的底数.
(1)若函数既有极大值又有极小值,试求实数的取值范围;
(2)设,且,是函数的两个零点,求证:.
科目:高中数学 来源: 题型:
【题目】在中,,,AB的垂直平分线分别交AB,AC于D、E(图一),沿DE将折起,使得平面平面BDEC(图二).
(1)若F是AB的中点,求证:平面ADE.
(2)P是AC上任意一点,求证:平面平面PBE.
(3)P是AC上一点,且平面PBE,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.
(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面向量满足,则以下说法正确的有( )个.
①;
②对于平面内任一向量,有且只有一对实数,使;
③若,且,则的范围为;
④设,且在处取得最小值,当时,则;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,.
(1)若曲线与曲线在它们的交点处具有公共切线,求a,b的值;
(2)当时,若函数在区间内恰有两个零点,求a的取值范围;
(3),求函数在区间上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的右焦点坐标为,且点在C上.
(1)求椭圆的方程;
(2)过点的直线l与C交于M,N两点,P为线段MN的中点,A为C的左顶点,求直线AP的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx﹣x+1,g(x)=ex﹣ax,a∈R.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若g(x)≥1在R上恒成立,求a的值;
(Ⅲ)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①命题“,有”的否定为:“”;
②已知向量与的夹角是钝角,则实数k的取值范围是;
③函数的单调递增区间是;
④“”是“直线和直线平行”的充分不必要条件;
其中错误命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com