| A. | 2015 | B. | 2016 | C. | 4030 | D. | 4032 |
分析 先求f′(x)的解析式,再求f″(x),由f″(x)=0 求得拐点的横坐标,代入函数解析式求拐点的纵坐标,然后利用中心对称知识,把要求的f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)的值转化为对称中心点的函数值.
解答 解:依题意,得:f′(x)=6x2-6x+1,∴f″(x)=12x-6.
由f″(x)=0,即2x-1=0,得:x=$\frac{1}{2}$,
把x=$\frac{1}{2}$代入函数f(x)的解析式得:f($\frac{1}{2}$)=2,
∴函数f(x)的对称中心为($\frac{1}{2}$,2);
则f($\frac{1}{2016}$)+f($\frac{2015}{2016}$)=f($\frac{2}{2016}$)+f($\frac{2014}{2016}$)=…=2f($\frac{1008}{2016}$)=2f($\frac{1}{2}$),
∴f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)=2015f($\frac{1}{2}$)=2015×2=4030.
故选:C.
点评 本题考查一阶导数、二阶导数的求法,函数的拐点的定义以及函数图象关于某点对称的条件,解答此题的关键是能够运用对称知识把要求解的问题转化为中心对称点的函数值问题,此题是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com