精英家教网 > 高中数学 > 题目详情
9.给出定义:设f′(x)是函数y=f(x)的导图数f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”,且该“拐点”也是该函数的对称中心,若f(x)=2x3-3x2+x+2,则f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)=(  )
A.2015B.2016C.4030D.4032

分析 先求f′(x)的解析式,再求f″(x),由f″(x)=0 求得拐点的横坐标,代入函数解析式求拐点的纵坐标,然后利用中心对称知识,把要求的f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)的值转化为对称中心点的函数值.

解答 解:依题意,得:f′(x)=6x2-6x+1,∴f″(x)=12x-6.
由f″(x)=0,即2x-1=0,得:x=$\frac{1}{2}$,
把x=$\frac{1}{2}$代入函数f(x)的解析式得:f($\frac{1}{2}$)=2,
∴函数f(x)的对称中心为($\frac{1}{2}$,2);
则f($\frac{1}{2016}$)+f($\frac{2015}{2016}$)=f($\frac{2}{2016}$)+f($\frac{2014}{2016}$)=…=2f($\frac{1008}{2016}$)=2f($\frac{1}{2}$),
∴f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)=2015f($\frac{1}{2}$)=2015×2=4030.
故选:C.

点评 本题考查一阶导数、二阶导数的求法,函数的拐点的定义以及函数图象关于某点对称的条件,解答此题的关键是能够运用对称知识把要求解的问题转化为中心对称点的函数值问题,此题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x2+4x+4,若存在实数t,当x∈[1,t]时,f(x-a)≤4x(a>0)恒成立,则实数t的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.下面是某钢铁加工厂所生产钢管内径尺寸(单位:mm)的另一个容量为100的随机抽样样本.
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.38 25.45 25.41 25.46 25.34 25.45 25.44 25.34 25.36 25.37
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
25.44 25.50 25.38 25.48 25.42 25.43 25.48 25.44 25.41 25.39
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.40 25.45 25.33 25.51 25.45 25.39 25.37 25.35 25.48 25.41
25.39 25.46 25.56 25.34 25.54 25.38 25.31 25.37 25.29 25.42
25.44 25.42 25.45 25.44 25.41 25.26 25.36 25.43 25.42 25.49
25.47 25.51 25.40 25.50 25.45 25.44 25.40 25.49 25.37 25.38
25.37 25.47 25.40 25.39 25.45 25.42 25.38 25.37 25.35 25.41
根据样本数据列出频率分布表、画出频率分布直方图,并与书中的频率分布直方图比较,你能得出什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.求过直线x-3y=0和3x+y-10=0的交点,且和原点的距离等于1的直线方程y=1,或3x-4y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知{an},{bn}均为等比数列,其前n项和分别为Sn,Tn
(1)若a1=8,b2=24,且对任意的n∈N*,总有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{{3}^{n}+1}{4}$,求数列{nan]的前n项和Pn
(2)当n≤3时,bn-an=n,若数列{an}唯一,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=sin$\frac{x}{2}$+acos$\frac{x}{2}$的图象关于点($\frac{3π}{2}$,0)对称,则函数f(x)的最大值等于(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.y=x2B.y=2sinxC.y=2cosxD.y=2lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R内的函数f(x)满足f(x+4)=f(x),当x∈[-1,3]时,f(x)=$\left\{\begin{array}{l}{t(1-|x|),}&{x∈[-1,1]}\\{\sqrt{1-(x-2)^{2},}}&{x∈(1,3]}\end{array}\right.$,则当t∈($\frac{8}{7}$,2]时,方程7f(x)-2x=0的不等实数根的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.作出参数方程$\left\{\begin{array}{l}{x=cosθ+1}\\{y{=sin}^{2}θ-1}\end{array}\right.$ (θ为参数,0≤θ≤2π)所表示的图象.

查看答案和解析>>

同步练习册答案