精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x2+4x+4,若存在实数t,当x∈[1,t]时,f(x-a)≤4x(a>0)恒成立,则实数t的最大值是9.

分析 化简可得当x∈[1,t]时,(x-a)2-4a+4≤0(a>0)恒成立,从而可得$\left\{\begin{array}{l}{(1-a)^{2}-4a+4≤0}\\{(t-a)^{2}-4a+4≤0}\end{array}\right.$,从而解得.

解答 解:∵函数f(x)=x2+4x+4,
∴f(x-a)=(x-a)2+4(x-a)+4
=(x-a)2+4x-4a+4;
∵当x∈[1,t]时,f(x-a)≤4x(a>0)恒成立,
∴当x∈[1,t]时,(x-a)2-4a+4≤0(a>0)恒成立,
∴$\left\{\begin{array}{l}{(1-a)^{2}-4a+4≤0}\\{(t-a)^{2}-4a+4≤0}\end{array}\right.$,
由(1-a)2-4a+4≤0解得,
1≤a≤5;
由(t-a)2-4a+4≤0可得,
a-$\sqrt{4a-4}$≤t≤a+$\sqrt{4a-4}$,
故当a=5时,a+$\sqrt{4a-4}$有最大值5+4=9,
故实数t的最大值是9,
故答案为:9.

点评 本题考查了二次函数的性质与二次不等式的解法,同时考查了转化思想与整体思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设集合M={(m,n)|0<m<2,0<n<3,m,n∈R},则任取(m,n)∈M,关于x的方程$\frac{m}{4}{x^2}$+nx+m=0有实根的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(0,3),|$\overrightarrow{b}$|=2,若λ∈R,则|λ$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.春节期间,小明得到了10个红包,每个红包内的金额互不相同,且都不超过150元.已知红包内金额在(0,50]的有3个,在(50,100]的有5个,在(100,150]的有2个.
(Ⅰ)小明为了感谢父母,特地从金额在(0,50]和(100,150]的红包中拿出两个给父母,求这两个红包中至少有一个红包的金额在(100,150]的概率;
(Ⅱ)试估计这个春节小明所得10个红包金额的平均数,并估计小明所得红包总金额.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的偶函数f(x)在x∈[0,+∞)上单调递增,则满足f(2x-1)<f($\frac{1}{3}$)的x的取值范围是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$)B.(-$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{3}$,$\frac{4}{3}$)D.(-$\frac{1}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(2x)=1og3(8x2+7),则f(1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边分别为a,b,c,A=$\frac{3π}{4}$,cosB=$\frac{3\sqrt{10}}{10}$,AD为BC边上的中线,且AD=1.
(1)求sinC的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设变量x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-2≤0}\end{array}\right.$,则目标函数z=y-2x的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出定义:设f′(x)是函数y=f(x)的导图数f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”,且该“拐点”也是该函数的对称中心,若f(x)=2x3-3x2+x+2,则f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{2015}{2016}$)=(  )
A.2015B.2016C.4030D.4032

查看答案和解析>>

同步练习册答案