精英家教网 > 高中数学 > 题目详情
对于任意的实数a、b,记max{a,b}=
a(a≥b)
b(a<b)
.若F(x)=max{f(x),g(x)}(x∈R),其中函数y=f(x)(x∈R)是奇函数,且在x=1处取得极小值-2,函数y=g(x) (x∈R)是正比例函数,其图象与x≥0时的函数y=f(x)的图象如图所示,则下列关于函数y=F(x)的说法中,正确的是(  )
分析:在同一个坐标系中作出两函数的图象,横坐标一样时取函数值较大的那一个,如图,由图象可以看出选项的正确与否.
解答:解:∵f(x)*g(x)=max{f(x),g(x)},
∴f(x)*g(x)=max{f(x),g(x)}的定义域为R,
f(x)*g(x)=max{f(x),g(x)},画出其图象如图中实线部分,
由图象可知:y=F(x)的图象不关于原点对称,不为奇函数;
故A不正确
y=F(x)有极大值F(-1)且有极小值F(0);故B正确
y=F(x)在(-3,0)上不为单调函数;故C不正确
y=F(x)的没有最小值和最大值,故D不正确
故选B.
点评:本题考点是函数的最值及其几何意义,本题考查新定义,需要根据题目中所给的新定义作出相应的图象由图象直观观察出函数的最值,对于一些分段类的函数,其最值往往借助图象来解决.本题的关键是读懂函数的图象,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)定义在R上的函数,对于任意的实数a,b都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f(
12
)的值
(2)求f(2-n)的解析式(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对于任意的实数a,b都有(a+b)2≤2(a2+b2)恒成立,则函数f(x)=|sinx|+|cosx|的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=λ1(
a
3
x3+
b-1
2
x2+x)+λ2x•3x(a,b∈R,a>0)

(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=f'(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意的实数a、b,记max{a,b}=
a(a≥b)
b(a<b)
.设F(x)=max{f(x),g(x)}(x∈R),其中g(x)=
1
3
x
,y=f(x)是奇函数.当x≥0时,y=f(x)的图象与g(x)的图象如图所示.则下列关于函数y=F(x)的说法中,正确的是(  )

查看答案和解析>>

同步练习册答案