精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=alnx+bx2,若函数f(x)在x=1处与直线y=-$\frac{1}{2}$相切.
(1)求实数a,b的值;
(2)求函数f(x)在[$\frac{1}{e}$,e]上的最大值.

分析 (1)求得函数的导数,由题意可得f(1)=-$\frac{1}{2}$,f′(1)=0,解方程即可得到所求值;
(2)研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值.

解答 解∵(1)f(x)=alnx+bx2
∴f′(x)=$\frac{a}{x}$+2bx,
∵函数f(x)在x=1处与直线y=-$\frac{1}{2}$相切,
∴$\left\{\begin{array}{l}{f′(1)=a+2b=0}\\{f(1)=b=-\frac{1}{2}}\end{array}\right.$,
解得a=1,b=-$\frac{1}{2}$;
(2)f(x)=lnx-$\frac{1}{2}$x2
f′(x)=$\frac{1{-x}^{2}}{x}$,
当$\frac{1}{e}$≤x≤e时,
令f′(x)>0得$\frac{1}{e}$≤x<1,
令f′(x)<0,得1<x≤e,
∴f(x)在[$\frac{1}{e}$,1],上单调递增,
在[1,e]上单调递减,
∴f(x)max=f(1)=-$\frac{1}{2}$.

点评 本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、导数在最大值、最小值问题中的应用、不等式的解法等基础知识,考查运算求解能力、化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}{x^3}-{a^2}x+\frac{1}{2}a$(a∈R).
(Ⅰ)当a=1时,x∈[-1,2],求f(x)的最值.
(Ⅱ)若对任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1、F2为焦点,离心率e=$\frac{1}{2}$的椭圆C2与抛物线C1的一个交点为P,且点P的横坐标为$\frac{2}{3}$.
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)过点F2的直线与椭圆C2相交于A、B两点,若$\overrightarrow{{F}_{2}B}$=-$\frac{1}{2}$$\overrightarrow{{F}_{2}A}$,试求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线y2=2px(p>0)的焦点为F,过点M(p,0),倾斜角为45°的直线与抛物线交于A、B两点,若|AF|+|BF|=10,则抛物线的准线方程为(  )
A.x+1=0B.2x+1=0C.2x+3=0D.4x+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△OBC为等边三角形,O为坐标原点,B,C在抛物线y2=2px(p>0)上,则△OBC的周长为12$\sqrt{3}$p.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=2px(p>0)的焦点为F,过F的直线l与抛物线交于A,B两点,A,B在抛物线准线上的射影分别为A1,B1,点M是A1B1的中点,若|AF|=m,|BF|=n,则|MF|=(  )
A.m+nB.$\frac{m+n}{2}$C.$\sqrt{mn}$D.mn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知AB是球O的直径,C,D为球面上两动点,AB⊥CD,若四面体ABCD体积的最大值为9,则球O的表面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,三棱锥P-ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是(  )
A.f(x)是关于x的增函数B.f(x)是关于x的减函数
C.f(x)关于x先递增后递减D.关于x先递减后递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

同步练习册答案