分析 设B(x1,y1),C(x2,y2),由于|OA|=|OB|,可得x12+y12=x22+y22.代入化简可得:x1=x2.由抛物线对称性,知点B、C关于x轴对称.不妨设直线OB的方程为:y=$\frac{\sqrt{3}}{3}$x,与抛物线方程联立解出即可得出.
解答 解:设B(x1,y1),C(x2,y2),
∵|OA|=|OB|,∴x12+y12=x22+y22.
又∵y12=2px1,y22=2px2,
∴x22-x12+2p(x2-x1)=0,
即(x2-x1)(x1+x2+2p)=0.
又∵x1、x2与p同号,∴x1+x2+2p≠0.
∴x2-x1=0,即x1=x2.
由抛物线对称性,知点B、C关于x轴对称.
不妨设直线OB的方程为:y=$\frac{\sqrt{3}}{3}$x,
联立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{{y}^{2}=2px}\end{array}\right.$,解得B$(6p,2\sqrt{3}p)$.
∴△OBC的周长=$6×2\sqrt{3}p$=12$\sqrt{3}$p.
故答案为:12$\sqrt{3}$p.
点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、等边三角形的性质,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | 4π | C. | 6π | D. | 5π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1]∪[2,+∞) | B. | (-1,2) | C. | (-∞,-1]∪[-$\frac{1}{2}$,+∞) | D. | (-1,-$\frac{1}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com