精英家教网 > 高中数学 > 题目详情
16.已知下列三个方程:x2+2ax+2a+3=0,x2+2(a+1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,则实数a的取值范围为(  )
A.(-∞,-1]∪[2,+∞)B.(-1,2)C.(-∞,-1]∪[-$\frac{1}{2}$,+∞)D.(-1,-$\frac{1}{2}$)

分析 至少有一个方程有实根的对立面是三个方程都没有根,由于正面解决此问题分类较多,而其对立面情况单一,故求解此类问题一般先假设没有一个方程有实数根,然后由根的判别式解得三方程都没有根的实数a的取值范围,其补集即为个方程 x2+2ax+2a+3=0,x2+2(a+1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根成立的实数a的取值范围.此种方法称为反证法

解答 解:假设没有一个方程有实数根,则:$\left\{\begin{array}{l}{4{a}^{2}-4(2a+3)<0}\\{4(a+1)^{2}-4{a}^{2}<0}\\{4{a}^{2}+8a<0}\end{array}\right.$
解之得:-1<a<-$\frac{1}{2}$,
故三个方程至少有一个方程有实根的a的取值范围是(-∞,-1]∪[-$\frac{1}{2}$,+∞),
故选:C.

点评 本题考查反证法,解题时要合理地运用反证法的思想灵活转化问题,以达到简化解题的目的,在求解如本题这类存在性问题时,若发现正面的求解分类较繁,而其对立面情况较少,不妨如本题采取求其反而成立时的参数的取值范围,然后求此范围的补集,即得所求范围,本题中三个方程都是一元二次方程,故求解时注意根的判别式的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知△OBC为等边三角形,O为坐标原点,B,C在抛物线y2=2px(p>0)上,则△OBC的周长为12$\sqrt{3}$p.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列向量中,与向量$\overrightarrow{c}$=(2,3)共线的一个向量$\overrightarrow{p}$=(  )
A.($\frac{2}{3}$,1)B.(1,-$\frac{2}{3}$)C.(3,2)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.
(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a8=21;若a2018=m2+1,则数列{an}的前2016项和是m2.(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m-$\frac{5}{4}$,则函数f(x)的图象与x轴有公共点的概率等于$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知矩阵A=$[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,B=$[{\begin{array}{l}1&1\\ 0&1\end{array}}]$.
(1)求矩阵AB;
(2)求矩阵AB的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{7π}{12}$,0),求θ的最小值.

查看答案和解析>>

同步练习册答案