精英家教网 > 高中数学 > 题目详情
8.在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m-$\frac{5}{4}$,则函数f(x)的图象与x轴有公共点的概率等于$\frac{3}{5}$.

分析 利用f(x)=-x2+mx+m-$\frac{5}{4}$的图象与x轴有公共点,可得m≤-5或m≥1,根据在[-6,9]内任取一个实数m,以长度为测度,可求概率.

解答 解:∵f(x)=-x2+mx+m-$\frac{5}{4}$的图象与x轴有公共点,
∴△=m2+4m-5≥0,
∴m≤-5或m≥1,
∴在[-6,9]内任取一个实数m,函数f(x)的图象与x轴有公共点的概率等于$\frac{(-5)-(-6)+9-1}{9-(-6)}$=$\frac{3}{5}$,
故答案为:$\frac{3}{5}$

点评 本题考查概率的计算,确定以长度为测度是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=4x,定点D(m,0)(m>0),过D作直线l交抛物线C于A,B两点,E是D点关于坐标原点O的对称点.
(I)求证:∠AED=∠BED;
(Ⅱ)是否存在垂直于x轴的直线l′被以AD为直径的圆截得的弦长恒为定值,若存在,求出l′的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知下列三个方程:x2+2ax+2a+3=0,x2+2(a+1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,则实数a的取值范围为(  )
A.(-∞,-1]∪[2,+∞)B.(-1,2)C.(-∞,-1]∪[-$\frac{1}{2}$,+∞)D.(-1,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动选数为(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点F为抛物线C:x2=4y的焦点,A,B,D为抛物线C上三点,且点A在第一象限,直线AB经过点F,BD与抛物线C在点A处的切线平行,点M为BD的中点.
(1)证明:AM与y轴平行;
(2)求△ABD面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P是抛物线x=$\frac{1}{4}$y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{5}$-1D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.现有6张不同的卡片,其中红色、黄色卡片各3张,从中任取2张,则这2张卡片不同颜色的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某程序如图示,则运行后输出的结果是(  )
A.0.8B.0.6C.0.4D.0.2

查看答案和解析>>

同步练习册答案