精英家教网 > 高中数学 > 题目详情
4.(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.
(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率.

分析 (1)由一元二次方程的判别式大于等于0得到方程x2+2ax+b2=0有实数根的充要条件为a≥b,用列举法求出a,b是从[0,3]任取的两个整数即从0,1,2,3四个数中任取的两个数,查出满足a≥b的事件数,然后直接利用古典概型概率计算公式求解;
(2)由题意求出点(a,b)所构成的正方形的面积,再由线性规划知识求出满足a≥b的区域面积,由测度比是面积比求概率

解答 解:(1)在区间[1,3]上任取两整数a、b,共有3×3=9种取法,基本事件共9个,(1,1),(1,2),(1,3),
(2,1),(2,2),(2,3),(3,1),(3,2),(3,3).其中第一个数表示a的取值,第二个数表示b的取值
使二次方程x2+2ax+b2=0有实数根的事件为A,A中A,B满足a≥b,则事件A中包含6基本事件.
事件A发生的概率为P(A)=$\frac{6}{9}=\frac{2}{3}$;
(2)试验的全部结果所构成的区域为{(a,b)|1≤a≤3,1≤b≤3}.
构成事件A的区域为{(a,b)|1≤a≤3,1≤b≤3,a≥b}.
如图,
∴所求的概率P(A)=$\frac{\frac{1}{2}×2×2}{2×2}=\frac{1}{2}$.

点评 本题考查了古典概型以及几何概型的概率计算公式,关键是理解(2)的测度比,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数φ(x)=$\frac{a}{x+1}$,a>0
(Ⅰ)若函数f(x)=lnx+φ(x),在(1,2)上只有一个极值点,求a的取值范围;
(Ⅱ)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥S-ABC中,底面ABC为边长等于$\sqrt{3}$的等边三角形,SA垂直于底面ABC,SA=1,那么三棱锥S-ABC的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0),过点A(b,0),B(0,-a)的直线倾斜角为$\frac{π}{3}$,原点到该直线的距离为$\frac{{\sqrt{3}}}{2}$
(1)求椭圆的方程;
(2)斜率大于零的直线过D(0,1)与椭圆交于E(x1,y1),F(x2,y2)两点,且x1=-2x2,求直线EF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sin4x<cos4x,则x的取值范围是(  )
A.$\left\{{\left.x\right|2kπ-\frac{3}{4}π<x<2kπ+\frac{π}{4},k∈Z}\right\}$B.$\left\{{\left.x\right|2kπ+\frac{π}{4}<x<2kπ+\frac{5}{4}π,k∈Z}\right\}$
C.$\left\{{\left.x\right|kπ-\frac{π}{4}<x<kπ+\frac{π}{4},k∈Z}\right\}$D.$\left\{{\left.x\right|kπ+\frac{π}{4}<x<kπ+\frac{3}{4}π,k∈Z}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知下列三个方程:x2+2ax+2a+3=0,x2+2(a+1)x+a2=0,x2+2ax-2a=0至少有一个方程有实数根,则实数a的取值范围为(  )
A.(-∞,-1]∪[2,+∞)B.(-1,2)C.(-∞,-1]∪[-$\frac{1}{2}$,+∞)D.(-1,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点F为抛物线C:x2=4y的焦点,A,B,D为抛物线C上三点,且点A在第一象限,直线AB经过点F,BD与抛物线C在点A处的切线平行,点M为BD的中点.
(1)证明:AM与y轴平行;
(2)求△ABD面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y2=2px(p>0),过点Q(4,0)作动直线l交抛物线于A,B两点,且OA⊥OB(O为坐标原点).
(Ⅰ)求抛物线的方程;
(Ⅱ)若对点P(t,0),恒有∠APQ=∠BPQ,求实数t的值及△PAB面积的最小值.

查看答案和解析>>

同步练习册答案