精英家教网 > 高中数学 > 题目详情
12.已知椭圆$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0),过点A(b,0),B(0,-a)的直线倾斜角为$\frac{π}{3}$,原点到该直线的距离为$\frac{{\sqrt{3}}}{2}$
(1)求椭圆的方程;
(2)斜率大于零的直线过D(0,1)与椭圆交于E(x1,y1),F(x2,y2)两点,且x1=-2x2,求直线EF的方程.

分析 (1)运用两点的斜率公式,可得$\frac{a}{b}$=$\sqrt{3}$,求得直线AB的方程,运用点到直线的距离公式,可得a,进而得到b,可得椭圆方程;
(2)设直线EF的方程为y=kx+1,代入椭圆方程,消去y,可得x的二次方程,运用韦达定理,结合条件,解方程可得k=1,进而得到所求直线的方程.

解答 解:(1)过点A(b,0),B(0,-a)的直线倾斜角为$\frac{π}{3}$,
可得kAB=$\frac{a}{b}$=tan$\frac{π}{3}$=$\sqrt{3}$,
即有直线AB的方程为y=$\sqrt{3}$x-a,
原点到该直线的距离为$\frac{{\sqrt{3}}}{2}$,可得$\frac{a}{\sqrt{1+3}}$=$\frac{\sqrt{3}}{2}$,
解得a=$\sqrt{3}$,b=1,
则椭圆方程为$\frac{{y}^{2}}{3}$+x2=1;
(2)设直线EF的方程为y=kx+1,代入椭圆方程,可得
(k2+3)x2+2kx-2=0,△=4k2+8(k2+3)>0恒成立,
由E(x1,y1),F(x2,y2),
可得x1+x2=-$\frac{2k}{3+{k}^{2}}$,x1x2=-$\frac{2}{3+{k}^{2}}$,又x1=-2x2
即有x2=$\frac{2k}{3+{k}^{2}}$,x1=-$\frac{4k}{3+{k}^{2}}$,
可得-$\frac{8{k}^{2}}{(3+{k}^{2})^{2}}$=-$\frac{2}{3+{k}^{2}}$,
解得k=1(-1舍去).
则直线EF的方程为y=x+1.

点评 本题考查椭圆方程的求法,注意运用直线的斜率公式和点到直线的距离公式,考查直线方程的求法,注意运用联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1、F2为焦点,离心率e=$\frac{1}{2}$的椭圆C2与抛物线C1的一个交点为P,且点P的横坐标为$\frac{2}{3}$.
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)过点F2的直线与椭圆C2相交于A、B两点,若$\overrightarrow{{F}_{2}B}$=-$\frac{1}{2}$$\overrightarrow{{F}_{2}A}$,试求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知AB是球O的直径,C,D为球面上两动点,AB⊥CD,若四面体ABCD体积的最大值为9,则球O的表面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,三棱锥P-ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是(  )
A.f(x)是关于x的增函数B.f(x)是关于x的减函数
C.f(x)关于x先递增后递减D.关于x先递减后递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列向量中,与向量$\overrightarrow{c}$=(2,3)共线的一个向量$\overrightarrow{p}$=(  )
A.($\frac{2}{3}$,1)B.(1,-$\frac{2}{3}$)C.(3,2)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有4个不同的小球,4个不同的盒子,现需把球全部放进盒子里,
(1)没有空盒子的方法共有多少种?
(2)可以有空盒子的方法共有多少种?
(3)恰有1个盒子不放球,共有多少种方法?(最后结果用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.
(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.根据要求求值:
(1)用辗转相除法求123和48的最大公约数.
(2)用更相减损术求80和36的最大公约数.
(3)把89化为二进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知i是虚数单位,复数z=(m2-2m-8)+(m2-3m-4)i,当m取何实数时,z是:
(1)实数  
(2)虚数  
(3)纯虚数   
(4)零.

查看答案和解析>>

同步练习册答案