精英家教网 > 高中数学 > 题目详情
20.如图,三棱锥P-ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是(  )
A.f(x)是关于x的增函数B.f(x)是关于x的减函数
C.f(x)关于x先递增后递减D.关于x先递减后递增

分析 由PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,利用x表示PA,PB,PC,由余弦定理得到关于x的解析式,进一步利用x表示tanθ,利用基本不等式求最值;然后判断选项.

解答 解:∵PA⊥平面ABC,AD⊥BC于D,BC=CD=AD=1,PD=x,∠BPC=θ,
∴可求得:AC=$\sqrt{2}$,AB=$\sqrt{5}$,PA=$\sqrt{{x}^{2}-1}$,PC=$\sqrt{{x}^{2}+1}$,BP=$\sqrt{{x}^{2}+4}$,
∴在△PBC中,由余弦定理知:cosθ=$\frac{P{B}^{2}+P{C}^{2}-B{C}^{2}}{2BP•PC}$=$\frac{2{x}^{2}+4}{2\sqrt{{x}^{2}+1}\sqrt{{x}^{2}+4}}$
∴tan2θ=$\frac{1}{co{s}^{2}θ}$-1=$\frac{({x}^{2}+1)({x}^{2}+4)}{({x}^{2}+2)^{2}}$-1=$\frac{{x}^{2}}{({x}^{2}+2)^{2}}$,
∴tanθ=$\frac{x}{{x}^{2}+2}$=$\frac{1}{x+\frac{2}{x}}$≤$\frac{1}{2\sqrt{x•\frac{2}{x}}}$=$\frac{\sqrt{2}}{4}$(当且仅当x=$\sqrt{2}$时取等号);
所以f(x)关于x先递增后递减.
故选:C.

点评 本题主要考查点、线、面的位置关系.直线与平面垂直的性质,余弦定理的应用,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知过抛物线y2=$\frac{16}{3}$x的焦点F的直线l交抛物线于A,B两点,交其准线于C点,已知$\overrightarrow{CB}$=3$\overrightarrow{BF}$,则线段AB的中点M到准线的距离为(  )
A.$\frac{8}{3}$B.3C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=alnx+bx2,若函数f(x)在x=1处与直线y=-$\frac{1}{2}$相切.
(1)求实数a,b的值;
(2)求函数f(x)在[$\frac{1}{e}$,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F为抛物线y2=4x的焦点,过F的直线l与抛物线交于A、B两点,若|AB|=8,|AF|>|BF|,则|AF|的值为4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥S-ABC中,底面ABC为边长等于$\sqrt{3}$的等边三角形,SA垂直于底面ABC,SA=1,那么三棱锥S-ABC的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.复数z=(m2+5m+6)+(m2-2m-15)i(m∈R),求满足下列条件的m的值.
(1)z是纯虚数;
(2)在复平面内对应的点位于第三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0),过点A(b,0),B(0,-a)的直线倾斜角为$\frac{π}{3}$,原点到该直线的距离为$\frac{{\sqrt{3}}}{2}$
(1)求椭圆的方程;
(2)斜率大于零的直线过D(0,1)与椭圆交于E(x1,y1),F(x2,y2)两点,且x1=-2x2,求直线EF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sin4x<cos4x,则x的取值范围是(  )
A.$\left\{{\left.x\right|2kπ-\frac{3}{4}π<x<2kπ+\frac{π}{4},k∈Z}\right\}$B.$\left\{{\left.x\right|2kπ+\frac{π}{4}<x<2kπ+\frac{5}{4}π,k∈Z}\right\}$
C.$\left\{{\left.x\right|kπ-\frac{π}{4}<x<kπ+\frac{π}{4},k∈Z}\right\}$D.$\left\{{\left.x\right|kπ+\frac{π}{4}<x<kπ+\frac{3}{4}π,k∈Z}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=tan($\frac{π}{2}$x+$\frac{π}{3}$)
(1)求f(x)的最小正周期.
(2)求f(x)的定义域和单调区间.
(3)求方程f(x)=$\sqrt{3}$的解集.

查看答案和解析>>

同步练习册答案