精英家教网 > 高中数学 > 题目详情
1.抛物线C:y2=4x的焦点为F,准线为l,点P(x0,y0)(y0>0)抛物线C上,过P作抛物线C的切线l1交l于点Q,过F作l1的垂线l2交抛物线C于A,B两点,记△ABQ的面积为S,求S的取值范围.

分析 求得抛物线的焦点和准线方程,对抛物线方程两边对x求导,求得切线的斜率和方程,令x=-1,可得Q的坐标;由两直线垂直的条件:斜率之积为-1,可得垂线l2的斜率和方程,代入抛物线的方程,运用韦达定理和弦长公式,求得|AB|,由点到直线的距离公式可得Q到AB的距离,运用三角形的面积公式,化简整理,即可得到所求面积的范围.

解答 解:抛物线C:y2=4x的焦点为F(1,0),准线为l:x=-1,
对抛物线y2=4x两边对x求导,可得2yy′=4,即y′=$\frac{2}{y}$,
可得切线l1的斜率为$\frac{2}{{y}_{0}}$,切线的方程为y-y0=$\frac{2}{{y}_{0}}$(x-x0),
又y02=4x0,即有y0y=2(x+x0),
令x=-1,可得Q(-1,$\frac{2({x}_{0}-1)}{{y}_{0}}$),
垂线l2的斜率为-$\frac{{y}_{0}}{2}$,方程为y=-$\frac{{y}_{0}}{2}$(x-1),
代入抛物线方程y2=4x,可得y02x2-(2y02+16)x+y02=0,
设A(x1,y1),B(x2,y2),可得x1+x2=2+$\frac{16}{{{y}_{0}}^{2}}$,
由抛物线的定义可得|AB|=x1+x2+p=2+$\frac{16}{{{y}_{0}}^{2}}$+2=4+$\frac{16}{{{y}_{0}}^{2}}$,
Q到直线l2的距离为d=$\frac{|-{y}_{0}-{y}_{0}+\frac{4({x}_{0}-1)}{{y}_{0}}|}{\sqrt{4+{{y}_{0}}^{2}}}$=$\frac{|-2{{y}_{0}}^{2}+4{x}_{0}-4|}{{y}_{0}\sqrt{4+{{y}_{0}}^{2}}}$=$\frac{\sqrt{4+{{y}_{0}}^{2}}}{{y}_{0}}$,
则△ABQ的面积为S=$\frac{1}{2}$d•|AB|=$\frac{1}{2}$•$\frac{\sqrt{4+{{y}_{0}}^{2}}}{{y}_{0}}$•(4+$\frac{16}{{{y}_{0}}^{2}}$)=2•$\frac{\sqrt{4+{{y}_{0}}^{2}}•(4+{{y}_{0}}^{2})}{{{y}_{0}}^{3}}$,
由S2=4•($\frac{4+{{y}_{0}}^{2}}{{{y}_{0}}^{2}}$)3=4•(1+$\frac{4}{{{y}_{0}}^{2}}$)3>4,可得S>2.
可得S的取值范围是(2,+∞).

点评 本题考查抛物线的定义、方程和性质,考查抛物线的切线方程的求法,注意运用导数和点满足抛物线方程,直线方程和抛物线的方程联立,运用韦达定理和弦长公式,点到直线的距离公式,运用三角形的面积公式和化简整理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知集合P={x|1≤x≤6,x∈N},对它的非空子集A,将A中每个元素k,都乘以(-1)k再求和(如A={1,3,6},可求得和为(-1)•1+(-1)3•3+(-1)6•6=2,则对M的所有非空子集,这些和的总和是96.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l与圆O:x2+y2=$\frac{1}{2}$切于点P,与焦点为F的抛物线C:y2=4x相切于点Q,则S△FPQ=(  )
A.2B.$\frac{3}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线y=2x+1与圆x2+y2-2x+4y=0的位置关系为(  )
A.相交且经过圆心B.相交但不经过圆心
C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过点M(2,0)的直线l与抛物线C:y2=4x交于A,B两点,直线OA,OB(O为坐标原点)与抛物线C的准线分别交于点S,T.
(1)设F为抛物线C的焦点,k1,k2分别为直线FS,FT的斜率,求k1k2的值;
(2)求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△OBC为等边三角形,O为坐标原点,B,C在抛物线y2=2px(p>0)上,则△OBC的周长为12$\sqrt{3}$p.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线E:y2=2px(p>0)的焦点为F,过F作斜率为1的直线交抛物线于A(x1,y1),B(x2,y2),且y1y2=-1.
(1)求抛物线E的方程;
(2)过F作圆M:(x+$\frac{9}{2}$)2+y2=9的切线,切点分别为C,D,求$\overrightarrow{FC}$$•\overrightarrow{FD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知正方体ABCD-A1B1C1D1棱长为8,点H在棱AA1上,且HA1=2,在侧面BCC1B1内作边长为2的正方形EFGC1,P是侧面BCC1B1内一动点且点P到平面CDD1C1距离等于线段PF的长,则当点P运动时,|HP|2的最小值是(  )
A.87B.88C.89D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a8=21;若a2018=m2+1,则数列{an}的前2016项和是m2.(用m表示).

查看答案和解析>>

同步练习册答案