分析 (1)写出过AB的直线方程,联立直线方程与抛物线方程,化为关于y的一元二次方程,两圆根与系数的关系求得p,则抛物线方程可求;
(2)求出抛物线的焦点坐标,得到以FM为直径的圆的方程,联立两圆方程求得C,D的坐标,由数量积的坐标运算得答案.
解答 解:(1)由抛物线E:y2=2px(p>0),得F($\frac{p}{2},0$),
∴直线AB的方程为y=1×(x-$\frac{p}{2}$),即y=x-$\frac{p}{2}$,
联立$\left\{\begin{array}{l}{y=x-\frac{p}{2}}\\{{y}^{2}=2px}\end{array}\right.$,得y2-2py-p2=0.
∴y1y2=-p2=-1,即p=1.
∴抛物线E的方程为y2=2x;
(2)由(1)得,F($\frac{1}{2}$,0),圆M:(x+$\frac{9}{2}$)2+y2=9的圆心M(-$\frac{9}{2},0$),
则以FM为直径的圆的方程为$(x+2)^{2}+{y}^{2}=\frac{25}{4}$.
联立$\left\{\begin{array}{l}{(x+\frac{9}{2})^{2}+{y}^{2}=9}\\{(x+2)^{2}+{y}^{2}=\frac{25}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{1}=-\frac{27}{10}}\\{{y}_{1}=-\frac{12}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{2}=-\frac{27}{10}}\\{{y}_{2}=\frac{12}{5}}\end{array}\right.$.
不妨取C($-\frac{27}{10},-\frac{12}{5}$),D($-\frac{27}{10},\frac{12}{5}$),
则$\overrightarrow{FC}$$•\overrightarrow{FD}$=($-\frac{27}{10}-\frac{1}{2}$,$-\frac{12}{5}$)•($-\frac{27}{10}-\frac{1}{2}$,$\frac{12}{5}$)=$(-\frac{16}{5})^{2}-\frac{144}{25}=\frac{112}{25}$.
点评 本题考查抛物线的简单性质,考查直线与圆位置关系的应用,考查平面向量数量积的坐标运算,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com