精英家教网 > 高中数学 > 题目详情
10.如图,已知正方体ABCD-A1B1C1D1棱长为8,点H在棱AA1上,且HA1=2,在侧面BCC1B1内作边长为2的正方形EFGC1,P是侧面BCC1B1内一动点且点P到平面CDD1C1距离等于线段PF的长,则当点P运动时,|HP|2的最小值是(  )
A.87B.88C.89D.90

分析 建立空间直角坐标系,过点H作HM⊥BB′,垂足为M,连接MP,得出HP2=HM2+MP2;当MP最小时,HP2最小,利用空间直角坐标系求出MP2的最小值即可.

解答 解:建立空间直角坐标系,如图所示,
过点H作HM⊥BB′,垂足为M,连接MP,
则HM⊥PM,
∴HP2=HM2+MP2
当MP最小时,HP2最小,
过P作PN⊥CC′,垂足为N,
设P(x,8,z),则
F(2,8,6),M(8,8,6),N(0,8,z),且0≤x≤8,0≤z≤8,
∵PN=PF,∴$\sqrt{(x-2)^{2}+(z-6)^{2}}$=x,化简得4x-4=(z-6)2
∴MP2=(x-8)2+(z-6)2=(x-8)2+4x-4=x2-12x+60=(x-6)2+24≥24,
当x=6时,MP2取得最小值,此时HP2=HM2+MP2=82+24=88为最小值.
故选:B.

点评 本题考查了空间直角坐标系的应用问题,也考查了空间中的距离的最值问题,是较难的题目,解题时要注意数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,动点P到点A(-1,0)及点B(1,0)的距离之和为4,且直线l:y=kx+2与P点的轨迹C有两个不同的交点M,N.
(1)求k的取值范围;
(2)设轨迹C于y轴的负半轴交于点Q,求△MNQ的面积的最大值及对应的k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.抛物线C:y2=4x的焦点为F,准线为l,点P(x0,y0)(y0>0)抛物线C上,过P作抛物线C的切线l1交l于点Q,过F作l1的垂线l2交抛物线C于A,B两点,记△ABQ的面积为S,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=4x,定点D(m,0)(m>0),过D作直线l交抛物线C于A,B两点,E是D点关于坐标原点O的对称点.
(I)求证:∠AED=∠BED;
(Ⅱ)是否存在垂直于x轴的直线l′被以AD为直径的圆截得的弦长恒为定值,若存在,求出l′的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:y2=-2px(p>0)上横坐标为-3的一点与其焦点的距离为4.
(1)求p的值;
(2)设动直线y=k(x+2)与抛物线C相交于A,B两点,问:在x轴上是否存在与k的取值无关的定点M,使得∠AMB被x轴平分?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥S-ABC中,底面ABC为边长等于$\sqrt{3}$的等边三角形,SA垂直于底面ABC,SA=1,那么三棱锥S-ABC的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线x-y=0被圆C:(x-1)2+y2=1截得的弦长是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P是抛物线x=$\frac{1}{4}$y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{5}$-1D.$\sqrt{5}$+1

查看答案和解析>>

同步练习册答案