精英家教网 > 高中数学 > 题目详情
A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为正三角形.记∠AOC=α.
(1)若A点的坐标为(
3
5
4
5
),求
3-cos2α+sinαcosα
1+sin2α
的值;
(2)求|BC|2的取值范围.
考点:同角三角函数基本关系的运用,任意角的三角函数的定义
专题:三角函数的求值
分析:(1)由条件利用同角三角函数的基本关系求得所求式子的值.
(2)设A点的坐标为(cosα,sinα),可得B点的坐标为(cos(α+
π
3
),sin(α+
π
3
)),且C(1,0),|BC|2 =2-2cos(α+
π
3
).再根据α∈(
π
6
π
2
),利用余弦函数的定义域和值域求得|BC|2的取值范围.
解答: 解:(1)∵A点的坐标为(
3
5
4
5
),∴tanα=
4
3
,∴
3-cos2α+sinαcosα
1+sin2α
=
3sin2α+2cos2α+sinαcosα
2sin2α+cos2α
=
3tan2α+2+tanα
2tan2α+1
=
16
9
+2+
4
3
16
9
+1
78
41

(2)设A点的坐标为(cosα,sinα),∵△AOB为正三角形,
∴B点的坐标为(cos(α+
π
3
),sin(α+
π
3
)),且C(1,0),
∴|BC|2=[cos(α+
π
3
)-1]2+sin2(α+
π
3
)=2-2cos(α+
π
3
).
而A、B分别在第一、二象限,∴α∈(
π
6
π
2
),∴α+
π
3
∈(
π
2
6
),∴cos(α+
π
3
)∈(-
3
2
,0).
∴|BC|2的取值范围是(2,2+
3
).
点评:本题主要考查同角三角函数的基本关系、余弦函数的定义域和值域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若球的体积增加到原来的8倍,则它的表面积增加到原来的(  )
A、2倍
B、4倍
C、2
3
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-10,4]上随机取一个数x,则x满足不等式x2-x-2<0的概率是(  )
A、
9
14
B、
3
14
C、
11
14
D、
5
14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c(x∈[-1,2]),且函数f(x)在x=1和x=-
2
3
处都取得极值.
(1)求a,b的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+
3
2
bx2-6x+1,f′(-1)=0,f′(2)=0

(I)求函数f(x)的解析式.
(II)对于?x1、x2∈[0,3],求证|f(x1)-f(x2)|≤10.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+clnx(其中a,b,c为实常数)
(1)当b=0,c=1时,讨论f(x)的单调区间;
(2)曲线y=f(x)(其中a>0)在点(1,f(1))处的切线方程为y=3x-3
①若函数f(x)无极值点且方程f′(x)=0有解,求a,b,c的值;
②若函数f(x)有两个极值点,证明f(x)的极值点小于-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-4,e]上的函数,f(x)=
|lnx|,0<x≤e
x2+2x-2,-4≤x≤0

(1)在坐标系上画出f(x)的图象
(2)写出f(x)的单调增区间
(3)若m=f(x)有两解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
x2+1
(a>0)
(1)若函数f(x)的极大值为2,极小值为-2,试求a,b的值;
(2)在(1)的条件下,若函数g(x)=k(x-
1
3
),试讨论函数F(x)=f(x)-g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0.b>0)与椭圆
x2
36
+
y2
32
=1有共同的焦点,点A(3,
7
)在双曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.

查看答案和解析>>

同步练习册答案