精英家教网 > 高中数学 > 题目详情
4.某市有A、B两所示范高中响应政府号召,对该市甲、乙两个教育落后地区开展支教活动.经上级研究决定:向甲地派出3名A校教师和2名B校教师,向乙地派出3名A校教师和3名B校教师.由于客观原因,需从拟派往甲、乙两地的教师中各自任选一名互换支教地区,则互换后A校教师派往甲地区人数不少于3名的概率为$\frac{7}{10}$.

分析 “甲地区A校教师人数不少于3名”包括两个事件:“甲地区A校教师人数有3名”和“甲地区A校教师人数有4名”,分别求出其概率,由此利用互斥事件概率加法公式能求出甲地区A校教师人数不少于3名的概率.

解答 解:令“甲地区A校教师人数不少于3名”为事件F,
包括两个事件:“甲地区A校教师人数有3名”设为事件F1
“甲地区A校教师人数有4名”设为事件F2
则P(F1)=$\frac{{C}_{3}^{1}}{{C}_{5}^{1}}$•$\frac{{C}_{3}^{1}}{{C}_{6}^{1}}$+$\frac{{C}_{2}^{1}}{{C}_{5}^{1}}$•$\frac{{C}_{3}^{1}}{{C}_{6}^{1}}$=$\frac{1}{2}$,P(F2)=$\frac{{C}_{2}^{1}}{{C}_{5}^{1}}$•$\frac{{C}_{3}^{1}}{{C}_{6}^{1}}$=$\frac{1}{5}$,
∴甲地区A校教师人数不少于3名的概率为:
P(F)=P(F1)+P(F2)=$\frac{1}{2}$+$\frac{1}{5}$=$\frac{7}{10}$.
故答案为:$\frac{7}{10}$.

点评 本题考查概率的求法,是中档题,解题时要注意等可能事件概率计算公式、互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=-x,那么在区间[-1,3]上,关于x的方程f(x)=kx+k-1(其中k为不等于1的实数)有四个不同的实数根,则k的取值范围是(  )
A.(  )B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{4}$)D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设对一切实数x有f(x+$\frac{1}{2}$)=$\frac{1}{2}$+$\sqrt{f(x+\frac{1}{2})-{f}^{2}(x+\frac{1}{2})}$,证明f(x)是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AB为☉O的直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.求证:∠FEB=∠CEB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某市场调查员在同一天对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x(元)和销售量y(件)之间的一组数据如下表所示:
价格x(元)99.51010.511
销售量y(件)11a865
由散点图可知,销售量y与价格x之间有较好的线性相关关系,且回归直线方程是$\widehat{y}$=-3.2x+4a,则实数a等于(  )
A.7B.8.5C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若对于任意的x>0,不等式$\frac{x}{{x}^{2}+2x+4}$≤a恒成立,则实数a的取值范围为[$\frac{1}{6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a,b,c均为正实数.
(1)若a+b+c=1,求证:a2+b2+c2≥$\frac{1}{3}$;
(2)求证:$\sqrt{\frac{{a}^{2}+{b}^{2}+{c}^{2}}{3}}$≥$\frac{a+b+c}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-kx+k-1.
(1)当k为何值时,不等式f(x)≥0恒成立;
(2)当k∈R时,解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题P“双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上任意一点Q到直线l1:bx+ay=0,l2:bx-ay=0的距离分别记作d1,d2则d1,d2为定值”是真命题
(1)求出d1•d2的值
(2)已知直线l1,l2关于y轴对称且使得椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上任意点到l1,l2的距离d1,d2满足${{d}_{1}}^{2}+{{d}_{2}}^{2}$为定值,求l1,l2的方程
(3)已知直线m与(2)中某一条直线平行(或重合)且与椭圆C交于M,N两点,求|OM|+|ON|的最大值.

查看答案和解析>>

同步练习册答案